Haystack Documentation
Release 2.5.0

Daniel Lindsley

Aug 27, 2021

Contents

1 Getting Started 3
1.1 Getting Started with Haystack e 3
1.2 Views & Forms o e e 10
1.3 Template Tags L e 16
1.4 Glossary o e e e e e e e e e e 17
1.5 Management Commands e e e e e e e e e e e e e e e 18
1.6 (In)Frequently Asked Questions 0 i i i e e e e e 22
1.7 Sites Using Haystack e 23
1.8 Haystack-Related Applications L 29
1.9 Installing Search Engines e 31
1.10 Debugging Haystack e 34
L11 Changelog o v e e e e e e e e 36
112 Contributing o o e e e e e e e e e e e e e e e 109
1.13 Python 3 Support e e 111
1.14 Migrating From Haystack 1.X to Haystack 2.X 112

2 Advanced Uses 117
2.1 BestPractices. oL e e e e e e 117
2.2 Highlighting e 121
2.3 Faceting e e 122
2.4 Autocomplete . .. oL L. e e e e e e e e e e e e e e e 128
2.5 B0OSt . .. 131
2.6 Signal Processors e 133
27 Multiple Indexes 135
2.8 Rich Content EXtraction e e e 138
2.9 Spatial Search e e e e e 139
2.10 Django Admin Search L e e e e e e e 146

3 Reference 147
3.1 SearchQuerySet APL e 147
32 SearchIndex API e 162
33 Input TYPes . . . o o o o e e e e e e 171
3.4 SearchField APl e 174
3.5 SearchResult API e e e e 178
3.6 SearchQuery APl e 179
3.7 SearchBackend API e 185
3.8 Architecture OVEIrVIEW L it e e e e e e e e e e e e 186

3.9 Backend SUpporto e e e e e e e e e e e e
3.10 Haystack Settings L e e e e e e e e e e
301 ULHLESs v vt e e e e e e e e e e e

4 Developing
4.1 Running Tests o o o e e e e e e e e e e e e
4.2 Creating New Backends e

5 Requirements

Index

Haystack Documentation, Release 2.5.0

Haystack provides modular search for Django. It features a unified, familiar API that allows you to plug in different
search backends (such as Solr, Elasticsearch, Whoosh, Xapian, etc.) without having to modify your code.

Note: This documentation represents the current version of Haystack. For old versions of the documentation:

* Vv2.5.X:
e v24.X:
* v2.3.X:
e v2.2.X:
* v2.1.X:
* v2.0.X:
e v01.2.X:
* v1.1.X:

https://django-haystack.readthedocs.io/en/v2.5.1/
https://django-haystack.readthedocs.io/en/v2.4.1/
https://django-haystack.readthedocs.io/en/v2.3.0/
https://django-haystack.readthedocs.io/en/v2.2.0/
https://django-haystack.readthedocs.io/en/v2.1.0/
https://django-haystack.readthedocs.io/en/v2.0.0/
https://django-haystack.readthedocs.io/en/v1.2.7/
https://django-haystack.readthedocs.io/en/v1.1/

Contents

http://lucene.apache.org/solr/
http://elasticsearch.org/
https://github.com/mchaput/whoosh/
http://xapian.org/
https://django-haystack.readthedocs.io/en/v2.5.1/
https://django-haystack.readthedocs.io/en/v2.4.1/
https://django-haystack.readthedocs.io/en/v2.3.0/
https://django-haystack.readthedocs.io/en/v2.2.0/
https://django-haystack.readthedocs.io/en/v2.1.0/
https://django-haystack.readthedocs.io/en/v2.0.0/
https://django-haystack.readthedocs.io/en/v1.2.7/
https://django-haystack.readthedocs.io/en/v1.1/

Haystack Documentation, Release 2.5.0

2 Contents

CHAPTER 1

Getting Started

If you’re new to Haystack, you may want to start with these documents to get you up and running:

1.1 Getting Started with Haystack

Search is a topic of ever increasing importance. Users increasing rely on search to separate signal from noise and find
what they’re looking for quickly. In addition, search can provide insight into what things are popular (many searches),
what things are difficult to find on the site and ways you can improve the site.

To this end, Haystack tries to make integrating custom search as easy as possible while being flexible/powerful enough
to handle more advanced use cases.

Haystack is a reusable app (that is, it relies only on its own code and focuses on providing just search) that plays nicely
with both apps you control as well as third-party apps (such as django.contrib. x) without having to modify the
sources.

Haystack also does pluggable backends (much like Django’s database layer), so virtually all of the code you write
ought to be portable between whichever search engine you choose.

Note: If you hit a stumbling block, there is both a mailing list and #haystack on irc.freenode.net to get help.

Note: You can participate in and/or track the development of Haystack by subscribing to the development mailing
list.

This tutorial assumes that you have a basic familiarity with the various major parts of Django (mod-
els/forms/views/settings/URLconfs) and tailored to the typical use case. There are shortcuts available as well as hooks
for much more advanced setups, but those will not be covered here.

For example purposes, we’ll be adding search functionality to a simple note-taking application. Here is myapp/
models.py:

http://groups.google.com/group/django-haystack
irc://irc.freenode.net/haystack
http://groups.google.com/group/django-haystack-dev
http://groups.google.com/group/django-haystack-dev

Haystack Documentation, Release 2.5.0

from django.db import models
from django.contrib.auth.models import User

class Note (models.Model) :
user = models.ForeignKey (User)
pub_date = models.DateTimeField()
title = models.CharField (max_length=200)
body = models.TextField()

def _ unicode_ (self):
return self.title

Finally, before starting with Haystack, you will want to choose a search backend to get started. There is a quick-start
guide to Installing Search Engines, though you may want to defer to each engine’s official instructions.

1.1.1 Installation

Use your favorite Python package manager to install the app from PyPI, e.g.

Example:

’pip install django-haystack

When using elasticsearch, use:

’pip install "django-haystack[elasticsearch]"

1.1.2 Configuration
Add Haystack To INSTALLED_APPS

As with most Django applications, you should add Haystack to the INSTALLED_APPS within your settings file
(usually settings.py).

Example:

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions’,
'django.contrib.sites"',

Added.
'haystack’',

Then your usual apps...
'blog',

4 Chapter 1. Getting Started

Haystack Documentation, Release 2.5.0

Modify Your settings.py

Within your settings.py, you'll need to add a setting to indicate where your site configuration file will live and
which backend to use, as well as other settings for that backend.

HAYSTACK_CONNECTIONS is a required setting and should be at least one of the following:

Solr

Example (Solr 4.X):

HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'haystack.backends.solr_backend.SolrEngine',
'"URL': 'http://127.0.0.1:8983/solr’
...or for multicore...
'URL': 'http://127.0.0.1:8983/solr/mysite’,
}I

Example (Solr 6.X):

HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'haystack.backends.solr_backend.SolrEngine',
'URL': 'http://127.0.0.1:8983/solr/tester’', # Assuming you,,
—created a core named 'tester' as described in installing search engines.
'"ADMIN_URL': 'http://127.0.0.1:8983/solr/admin/cores"
...or for multicore...
'URL': 'http://127.0.0.1:8983/solr/mysite’,
}I

Elasticsearch

Example (ElasticSearch 1.x):

HAYSTACK_CONNECTIONS = {
'default': {

'ENGINE': 'haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine’',
'URL': 'http://127.0.0.1:9200/"',
'"INDEX_NAME': 'haystack',

by

Example (ElasticSearch 2.x):

HAYSTACK_CONNECTIONS = {
'default': {

'ENGINE': 'haystack.backends.elasticsearch2_backend.Elasticsearch2SearchEngine
‘—"l

'URL': 'http://127.0.0.1:9200/"',

'"INDEX_NAME': 'haystack',

}y

1.1. Getting Started with Haystack 5

Haystack Documentation, Release 2.5.0

Example (ElasticSearch 5.x):

HAYSTACK_CONNECTIONS = {
'default': {

'ENGINE': 'haystack.backends.elasticsearch5_backend.Elasticsearch5SearchEngine
<~>',

'URL': 'http://127.0.0.1:9200/"',

'"INDEX_NAME': 'haystack',

b

Example (ElasticSearch 7.x):

HAYSTACK_CONNECTIONS = {
'default': {

'ENGINE': 'haystack.backends.elasticsearch’_backend.Elasticsearch7SearchEngine
' ’
'URL': 'http://127.0.0.1:9200/"',
'"INDEX_NAME': 'haystack',
} 4
}
Whoosh

Requires setting PATH to the place on your filesystem where the Whoosh index should be located. Standard warnings
about permissions and keeping it out of a place your webserver may serve documents out of apply.

Example:

import os
HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'haystack.backends.whoosh_backend.WhooshEngine',
'"PATH': os.path.join(os.path.dirname(file), 'whoosh_ index'),
}I

Xapian
First, install the Xapian backend (via http://github.com/notanumber/xapian-haystack/tree/master) per the instructions

included with the backend.

Requires setting PATH to the place on your filesystem where the Xapian index should be located. Standard warnings
about permissions and keeping it out of a place your webserver may serve documents out of apply.

Example:

import os
HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'xapian_backend.XapianEngine',
'"PATH': os.path.join(os.path.dirname(file), 'xapian_index'),
}I

6 Chapter 1. Getting Started

http://github.com/notanumber/xapian-haystack/tree/master

Haystack Documentation, Release 2.5.0

Simple

The simple backend using very basic matching via the database itself. It’s not recommended for production use but
it will return results.

Warning: This backend does NOT work like the other backends do. Data preparation does nothing & advanced
filtering calls do not work. You really probably don’t want this unless you’re in an environment where you just
want to silence Haystack.

Example:

HAYSTACK_CONNECTIONS = {
'default': {
'"ENGINE': 'haystack.backends.simple_backend.SimpleEngine',
by

1.1.3 Handling Data

Creating SearchIndexes

SearchIndex objects are the way Haystack determines what data should be placed in the search index and handles
the flow of data in. You can think of them as being similar to Django Mode1s or Forms in that they are field-based
and manipulate/store data.

You generally create a unique SearchIndex for each type of Model you wish to index, though you can reuse the
same SearchIndex between different models if you take care in doing so and your field names are very standard-
ized.

To build a SearchIndex, all that’s necessary is to subclass both indexes.SearchIndex & indexes.
Indexable, define the fields you want to store data with and define a get_model method.

We’ll create the following NoteIndex to correspond to our Note model. This code generally goes in a
search_indexes.py file within the app it applies to, though that is not required. This allows Haystack to au-
tomatically pick it up. The NoteIndex should look like:

import datetime
from haystack import indexes
from myapp.models import Note

class NoteIndex (indexes.SearchlIndex, indexes.Indexable):
text = indexes.CharField(document=True, use_template=True)
author = indexes.CharField (model_attr='user')
pub_date = indexes.DateTimeField(model_attr='pub_date")

def get_model (self):
return Note

def index_queryset (self, using=None) :
"""Used when the entire index for model is updated."""
return self.get_model () .objects.filter (pub_date__lte=datetime.datetime.now())

1.1. Getting Started with Haystack 7

Haystack Documentation, Release 2.5.0

Every SearchIndex requires there be one (and only one) field with document=True. This indicates to both
Haystack and the search engine about which field is the primary field for searching within.

Warning: When you choose a document=True field, it should be consistently named across all of your
SearchIndex classes to avoid confusing the backend. The convention is to name this field text.

There is nothing special about the text field name used in all of the examples. It could be anything; you could
call it pink_polka_dot and it won’t matter. It’s simply a convention to call it text.

To use a document field with a name other than text, be sure to configure the HAYSTACK_DOCUMENT_FIELD
setting. For example,:

HAYSTACK_DOCUMENT_FIELD = 'pink_polka_dot'

Additionally, we’re providing use_template=True on the text field. This allows us to use a data template
(rather than error-prone concatenation) to build the document the search engine will index. You’ll need to create a
new template inside your template directory called search/indexes/myapp/note_text.txt and place the
following inside:

{{ object.title }}
{{ object.user.get_full_name }}
{{ object.body }}

In addition, we added several other fields (author and pub_date). These are useful when you want to provide
additional filtering options. Haystack comes with a variety of SearchField classes to handle most types of data.

A common theme is to allow admin users to add future content but have it not display on the site until that future date
is reached. We specify a custom index_queryset method to prevent those future items from being indexed.

1.1.4 Setting Up The Views

Add The searchview To Your URLconf

Within your URLconf, add the following line:

path('search/', include ('haystack.urls')),

This will pull in the default URLconf for Haystack. It consists of a single URLconf that points to a SearchView
instance. You can change this class’s behavior by passing it any of several keyword arguments or override it entirely
with your own view.

Search Template

Your search template (search/search.html for the default case) will likely be very simple. The following is
enough to get going (your template/block names will likely differ):

{% extends 'base.html' %}

{% block content %}

<h2>Search</h2>
<form method="get" action=".">
<table>

(continues on next page)

8 Chapter 1. Getting Started

Haystack Documentation, Release 2.5.0

(continued from previous page)

{{ form.as_table }}

<tr>
<td> </td>
<td>

<input type="submit" wvalue="Search">

</td>

</tr>

</table>

{$ if query %}
<h3>Results</h3>

{% for result in page.object_list %}

<p>

{{ result.object.
—title }}

</p>
{% empty %}

<p>No results found.</p>
{% endfor %}

{% if page.has_previous or page.has_next %}
<div>
{%$ if page.has_previous %}<a href="7?g={{ query }}&page={{_
—page.previous_page_number }}">{% endif %$}« Previous{% if page.has_previous %}
—{% endif %}
\
{$ if page.has_next %}<a href="?g={{ query }}&page={{ page.
—next_page_number }}">{% endif %}Next » {% if page.has_next %$}{% endif %}
</div>
{% endif %}
{% else %}
{# Show some example queries to run, maybe query syntax, something else?
o #)
{% endif %}
</form>
{% endblock %}

Note that the page . object_1ist isactually alist of SearchResult objects instead of individual models. These
objects have all the data returned from that record within the search index as well as score. They can also directly
access the model for the result via { { result.object }}.Sothe {{ result.object.title }} usesthe
actual Note object in the database and accesses its tit le field.

Reindex

The final step, now that you have everything setup, is to put your data in from your database into the search index.
Haystack ships with a management command to make this process easy.

Note: If you’re using the Solr backend, you have an extra step. Solr’s configuration is XML-based, so you’ll need
to manually regenerate the schema. You should run . /manage.py build_solr_schema first, drop the XML
output in your Solr’s schema . xm1 file and restart your Solr server.

Simply run . /manage.py rebuild_index. You’ll get some totals of how many models were processed and
placed in the index.

1.1. Getting Started with Haystack

Haystack Documentation, Release 2.5.0

Note: Using the standard SearchIndex, your search index content is only updated whenever you run either . /
manage.py update_index or start afresh with . /manage.py rebuild_index.

You should cron up a . /manage.py update_index job at whatever interval works best for your site (using
—-—age=<num_hours> reduces the number of things to update).

Alternatively, if you have low traffic and/or your search engine can handle it, the RealtimeSignalProcessor
automatically handles updates/deletes for you.

1.1.5 Complete!

You can now visit the search section of your site, enter a search query and receive search results back for the query!
Congratulations!

1.1.6 What’s Next?

This tutorial just scratches the surface of what Haystack provides. The SearchQuerySet is the underpinning of all
search in Haystack and provides a powerful, QuerySet-like API (see SearchQuerySet API). You can use much more
complicated SearchForms/SearchViews to give users a better Ul (see Views & Forms). And the Best Practices
provides insight into non-obvious or advanced usages of Haystack.

1.2 Views & Forms

Note: As of version 2.4 the views in haystack.views.SearchView are deprecated in favor of the new generic
views in haystack.generic_views.SearchView which use the standard Django class-based views which
are available in every version of Django which is supported by Haystack.

Haystack comes with some default, simple views & forms as well as some django-style views to help you get started
and to cover the common cases. Included is a way to provide:

* Basic, query-only search.

¢ Search by models.

* Search with basic highlighted results.

* Faceted search.

¢ Search by models with basic highlighted results.

Most processing is done by the forms provided by Haystack via the search method. As a result, all but the faceted
types (see Faceting) use the standard SearchView.

There is very little coupling between the forms & the views (other than relying on the existence of a search method
on the form), so you may interchangeably use forms and/or views anywhere within your own code.

1.2.1 Forms

10 Chapter 1. Getting Started

https://docs.djangoproject.com/en/1.7/topics/class-based-views/

Haystack Documentation, Release 2.5.0

SearchForm

The most basic of the form types, this form consists of a single field, the g field (for query). Upon searching, the form
will take the cleaned contents of the g field and perform an aut o_query on either the custom SearchQuerySet
you provide or off a default SearchQuerySet.

To customize the SearchQuerySet the form will use, pass it a searchqueryset parameter to the constructor
with the SearchQuerySet you’d like to use. If using this form in conjunction with a SearchView, the form will
receive whatever SearchQuerySet you provide to the view with no additional work needed.

The SearchForm also accepts a 1oad_all parameter (True or False), which determines how the database is
queried when iterating through the results. This also is received automatically from the SearchView.

All other forms in Haystack inherit (either directly or indirectly) from this form.
HighlightedSearchForm

Identical to the SearchForm except that it tags the highlight method on to the end of the SearchQuerySet
to enable highlighted results.

ModelSearchForm

This form adds new fields to form. It iterates through all registered models for the current SearchSite and provides
a checkbox for each one. If no models are selected, all types will show up in the results.

HighlightedModelSearchForm

Identical to the ModelSearchForm except that it tags the highlight method on to the end of the
SearchQuerySet to enable highlighted results on the selected models.

FacetedSearchForm

Identical to the SearchForm except that it adds a hidden selected_facets field onto the form, allowing the
form to narrow the results based on the facets chosen by the user.

Creating Your Own Form

The simplest way to go about creating your own form is to inherit from SearchForm (or the desired parent) and
extend the search method. By doing this, you save yourself most of the work of handling data correctly and stay
API compatible with the SearchView.

For example, let’s say you're providing search with a user-selectable date range associated with it. You might create a
form that looked as follows:

from django import forms
from haystack.forms import SearchForm

class DateRangeSearchForm(SearchForm) :
start_date = forms.DateField(required=False)
end_date = forms.DateField(required=False)

def search(self):

(continues on next page)

1.2. Views & Forms 11

Haystack Documentation, Release 2.5.0

(continued from previous page)

First, store the SearchQuerySet received from other processing.
sgs = super () .search()

if not self.is_valid():
return self.no_query_found ()

Check to see 1f a start_date was chosen.
if self.cleaned_datal['start_date']:
sgs = sqgs.filter (pub_date_ _gte=self.cleaned_datal['start_date'])

Check to see 1f an end _date was chosen.
if self.cleaned_datal['end_date']:
sgqs = sqgs.filter (pub_date__ lte=self.cleaned_datal['end_date'])

return sgs

This form adds two new fields for (optionally) choosing the start and end dates. Within the search method, we
grab the results from the parent form’s processing. Then, if a user has selected a start and/or end date, we apply that
filtering. Finally, we simply return the SearchQuerySet.

1.2.2 Views

Note: As of version 2.4 the views in haystack.views.SearchView are deprecated in favor of the new generic
views in haystack.generic_views.SearchView which use the standard Django class-based views which
are available in every version of Django which is supported by Haystack.

New Django Class Based Views

New in version 2.4.0.

The views in haystack.generic_views.SearchView inherit from Django’s standard FormView. The exam-
ple views can be customized like any other Django class-based view as demonstrated in this example which filters the
search results in get_queryset:

views.py
from datetime import date

from haystack.generic_views import SearchView

class MySearchView (SearchView) :

mmn

""r"My custom search view.

def get_queryset (self):
queryset = super () .get_queryset ()
further filter queryset based on some set of criteria
return queryset.filter (pub_date_ _gte=date (2015, 1, 1))

def get_context_data(self, =xargs, xxkwargs):
context = super () .get_context_data(xargs, =xxkwargs)
do something
return context

(continues on next page)

12 Chapter 1. Getting Started

https://docs.djangoproject.com/en/1.7/topics/class-based-views/
https://docs.djangoproject.com/en/1.7/ref/class-based-views/generic-editing/#formview

Haystack Documentation, Release 2.5.0

(continued from previous page)

urls.py

urlpatterns = [
path('/search/', MySearchView.as_view(), name='search_view'),

Upgrading

Upgrading from basic usage of the old-style views to new-style views is usually as simple as:

1. Create new views under views.py subclassing haystack.generic_views.SearchView or
haystack.generic_views.FacetedSearchView

2. Move all parameters of your old-style views from your urls.py to attributes on your new views. This will
require renaming searchqueryset to queryset and template to template_name

3. Review your templates and replace the page variable with page_obj

Here’s an example:

old-style views...
urls.py

sgs = SearchQuerySet ().filter (author="7john")

urlpatterns = [
path ('', SearchView (
template="'my/special/path/john_search.html',
searchqueryset=sgs,
form_class=SearchForm
), name='haystack_search'),

new-style views...
views.py

class JohnSearchView (SearchView) :

template_name = 'my/special/path/Jjohn_search.html'
queryset = SearchQuerySet ().filter (author='john')
form_class = SearchForm

urls.py

from myapp.views import JohnSearchView

urlpatterns = [
path('', JohnSearchView.as_view (), name='haystack_ search'),

If your views overrode methods on the old-style SearchView, you will need to refactor those methods to the equivalents
on Django’s generic views. For example, if you previously used extra_context () to add additional template
variables or preprocess the values returned by Haystack, that code would move to get_context_data

Old Method New Method
extra_context () get_context_data()
create_response () | dispatch() or get () and post ()
get_query () get_queryset()

1.2. Views & Forms 13

https://docs.djangoproject.com/en/1.7/ref/class-based-views/mixins-simple/#django.views.generic.base.ContextMixin.get_context_data
https://docs.djangoproject.com/en/1.7/ref/class-based-views/base/#django.views.generic.base.View.dispatch
https://docs.djangoproject.com/en/1.7/ref/class-based-views/mixins-multiple-object/#django.views.generic.list.MultipleObjectMixin.get_queryset

Haystack Documentation, Release 2.5.0

Old-Style Views

Deprecated since version 2.4.0.

Haystack comes bundled with three views, the class-based views (SearchView & FacetedSearchView) and a
traditional functional view (basic_search).

The class-based views provide for easy extension should you need to alter the way a view works. Except in the case of
faceting (again, see Faceting), the SearchView works interchangeably with all other forms provided by Haystack.

The functional view provides an example of how Haystack can be used in more traditional settings or as an example
of how to write a more complex custom view. It is also thread-safe.

SearchView (template=None, load_all=True, form_class=None, searchqueryset=None,
results_per_page=None)

The SearchView is designed to be easy/flexible enough to override common changes as well as being internally
abstracted so that only altering a specific portion of the code should be easy to do.

Without touching any of the internals of the SearchView, you can modify which template is used, which form class
should be instantiated to search with, what SearchQuerySet to use in the event you wish to pre-filter the results.
what Context-style object to use in the response and the 1oad_all performance optimization to reduce hits on
the database. These options can (and generally should) be overridden at the URLconf level. For example, to have
a custom search limited to the ‘John’ author, displaying all models to search by and specifying a custom template
(my/special/path/john_search.html), your URLconf should look something like:

from django.urls import path

from haystack.forms import ModelSearchForm
from haystack.query import SearchQuerySet
from haystack.views import SearchView

sgs = SearchQuerySet ().filter (author="7john")

Without threading...
urlpatterns = [
path('', SearchView (
template="'my/special/path/john_search.html',
searchqueryset=sqgs,
form_class=SearchForm
), name='haystack_search'),

With threading...
from haystack.views import SearchView, search_view_factory

urlpatterns = [
path('', search_view_factory(
view_class=SearchView,
template="'my/special/path/john_search.html',
searchqueryset=sqgs,
form_class=ModelSearchForm
), name='haystack_search'),

Warning: The standard SearchView is not thread-safe. Use the search_view_factory function, which
returns thread-safe instances of SearchView.

14 Chapter 1. Getting Started

Haystack Documentation, Release 2.5.0

By default, if you don’t specify a form_class, the view will use the haystack. forms.ModelSearchForm
form.

Beyond this customizations, you can create your own SearchView and extend/override the following methods to
change the functionality.

__call__ (self, request)

Generates the actual response to the search.

Relies on internal, overridable methods to construct the response. You generally should avoid altering this method
unless you need to change the flow of the methods or to add a new method into the processing.

build form(self, form kwargs=None)

Instantiates the form the class should use to process the search query.

Optionally accepts a dictionary of parameters that are passed on to the form’s __init__. You can use this to lightly
customize the form.

You should override this if you write a custom form that needs special parameters for instantiation.

get_query (self)

Returns the query provided by the user.

Returns an empty string if the query is invalid. This pulls the cleaned query from the form, via the g field, for use
elsewhere within the Searchview. This is used to populate the query context variable.

get_results (self)

Fetches the results via the form.

Returns an empty list if there’s no query to search with. This method relies on the form to do the heavy lifting as much
as possible.

build_page (self)

Paginates the results appropriately.

In case someone does not want to use Django’s built-in pagination, it should be a simple matter to override this method
to do what they would like.

extra_context (self)

Allows the addition of more context variables as needed. Must return a dictionary whose contents will add to or
overwrite the other variables in the context.

1.2. Views & Forms 15

Haystack Documentation, Release 2.5.0

create_response (self)

Generates the actual HttpResponse to send back to the user. It builds the page, creates the context and renders the
response for all the aforementioned processing.

basic_search(request, template='search/search.html', load_all=True,
form class=ModelSearchForm, searchqueryset=None, extra_context=None,
results_per_page=None)

The basic_search tries to provide most of the same functionality as the class-based views but resembles a more
traditional generic view. It’s both a working view if you prefer not to use the class-based views as well as a good
starting point for writing highly custom views.

Since it is all one function, the only means of extension are passing in kwargs, similar to the way generic views work.
Creating Your Own View

As with the forms, inheritance is likely your best bet. In this case, the FacetedSearchView is a perfect example
of how to extend the existing SearchView. The complete code for the FacetedSearchView looks like:

class FacetedSearchView (SearchView) :
def extra_context (self):
extra = super () .extra_context ()

if self.results == []:

extra['facets'] = self.form.search().facet_counts/()
else:

extra['facets'] = self.results.facet_counts{()

return extra

It updates the name of the class (generally for documentation purposes) and adds the facets from the
SearchQuerySet to the context as the facets variable. As with the custom form example above, it relies on
the parent class to handle most of the processing and extends that only where needed.

1.3 Template Tags

Haystack comes with a couple common template tags to make using some of its special features available to templates.

1.3.1 highlight

Takes a block of text and highlights words from a provided query within that block of text. Optionally accepts
arguments to provide the HTML tag to wrap highlighted word in, a CSS class to use with the tag and a maximum
length of the blurb in characters.

The defaults are span for the HTML tag, highlighted for the CSS class and 200 characters for the excerpt.

Syntax:

{% highlight <text_block> with <query> [css_class "class_name"] [html_tag "span"]
— [max_length 200] %}

Example:

16 Chapter 1. Getting Started

Haystack Documentation, Release 2.5.0

Highlight summary with default behavior.
{% highlight result.summary with query %}

Highlight summary but wrap highlighted words with a div and the
following CSS class.
{% highlight result.summary with query html_tag "div" css_class "highlight _me_ please”

S

Highlight summary but only show 40 words.
{% highlight result.summary with query max_length 40 %}

The highlighter used by this tag can be overridden as needed. See the Highlighting documentation for more informa-
tion.

1.3.2 more like this

Fetches similar items from the search index to find content that is similar to the provided model’s content.

Note: This requires a backend that has More Like This built-in.

Syntax:

{% more_like_this model_instance as varname [for app_label.model_name, app_label.model__
—name, ...] [limit n] %}

Example:

Pull a full SearchQuerySet (lazy loaded) of similar content.
{% more_like_this entry as related_content %}

Pull just the top 5 similar pieces of content.
{% more_like_this entry as related_content limit 5 %}

Pull just the top 5 similar entries or comments.
{% more_like_this entry as related_content for "blog.entry,comments.comment" limit 5

%)

This tag behaves exactly like SearchQuerySet .more_like_this, so all notes in that regard apply here as well.

1.4 Glossary

Search is a domain full of its own jargon and definitions. As this may be an unfamiliar territory to many developers,
what follows are some commonly used terms and what they mean.

Engine An engine, for the purposes of Haystack, is a third-party search solution. It might be a full service (i.e. Solr)
or a library to build an engine with (i.e. Whoosh)

Index The datastore used by the engine is called an index. Its structure can vary wildly between engines but commonly
they resemble a document store. This is the source of all information in Haystack.

Document A document is essentially a record within the index. It usually contains at least one blob of text that serves
as the primary content the engine searches and may have additional data hung off it.

1.4. Glossary 17

http://lucene.apache.org/solr/
https://github.com/mchaput/whoosh/

Haystack Documentation, Release 2.5.0

Corpus A term for a collection of documents. When talking about the documents stored by the engine (rather than
the technical implementation of the storage), this term is commonly used.

Field Within the index, each document may store extra data with the main content as a field. Also sometimes called
an attribute, this usually represents metadata or extra content about the document. Haystack can use these fields
for filtering and display.

Term A term is generally a single word (or word-like) string of characters used in a search query.

Stemming A means of determining if a word has any root words. This varies by language, but in English, this
generally consists of removing plurals, an action form of the word, et cetera. For instance, in English, ‘giraffes’
would stem to ‘giraffe’. Similarly, ‘exclamation” would stem to ‘exclaim’. This is useful for finding variants of
the word that may appear in other documents.

Boost Boost provides a means to take a term or phrase from a search query and alter the relevance of a result based
on if that term is found in the result, a form of weighting. For instance, if you wanted to more heavily weight
results that included the word ‘zebra’, you’d specify a boost for that term within the query.

More Like This Incorporating techniques from information retrieval and artificial intelligence, More Like This is a
technique for finding other documents within the index that closely resemble the document in question. This
is useful for programmatically generating a list of similar content for a user to browse based on the current
document they are viewing.

Faceting Faceting is a way to provide insight to the user into the contents of your corpus. In its simplest form, it is a
set of document counts returned with results when performing a query. These counts can be used as feedback
for the user, allowing the user to choose interesting aspects of their search results and “drill down” into those
results.

An example might be providing a facet on an author field, providing back a list of authors and the number of
documents in the index they wrote. This could be presented to the user with a link, allowing the user to click
and narrow their original search to all results by that author.

1.5 Management Commands

Haystack comes with several management commands to make working with Haystack easier.

1.5.1 clear index
The clear_index command wipes out your entire search index. Use with caution. In addition to the standard
management command options, it accepts the following arguments:

——noinput: If provided, the interactive prompts are skipped and the index is unceremoniously wiped
out.

——verbosity: Accepted but ignored.

——using: Update only the named backend (can be used multiple times). By default, all backends will
be updated.

——nocommit: If provided, it will pass commit=False to the backend. This means that the update will not
become immediately visible and will depend on another explicit commit or the backend’s commit
strategy to complete the update.

By default, this is an INTERACTIVE command and assumes that you do NOT wish to delete the entire index.

Note: The ——nocommit argument is only supported by the Solr backend.

18 Chapter 1. Getting Started

Haystack Documentation, Release 2.5.0

Warning: Depending on the backend you’re using, this may simply delete the entire directory, so be sure your
HAYSTACK_CONNECTIONS [<alias>] ['PATH'] setting is correctly pointed at just the index directory.

1.5.2 update_index

Note: If you use the ——start/—--end flags on this command, you’ll need to install dateutil to handle the datetime
parsing.

The update_index command will freshen all of the content in your index. It iterates through all indexed models and
updates the records in the index. In addition to the standard management command options, it accepts the following
arguments:

——age: Number of hours back to consider objects new. Useful for nightly reindexes (——age=24).
Requires SearchIndexes to implement the get_updated_field method. Default is None.

——start: The start date for indexing within. Can be any dateutil-parsable string, recom-
mended to be YYYY-MM-DDTHH:MM:SS. Requires SearchIndexes to implement the
get_updated_field method. Default is None.

——end: The end date for indexing within. Can be any dateutil-parsable string, recom-
mended to be YYYY-MM-DDTHH:MM:SS. Requires SearchIndexes to implement the
get_updated_field method. Default is None.

—-batch-size: Number of items to index at once. Default is 1000.
—-remove: Remove objects from the index that are no longer present in the database.

——workers: Allows for the use multiple workers to parallelize indexing. Requires
multiprocessing.

——verbosity: If provided, dumps out more information about what’s being done.
* 0 = No output
* 1 = Minimal output describing what models were indexed and how many records.

* 2 = Full output, including everything from 1 plus output on each batch that is indexed, which
is useful when debugging.

——using: Update only the named backend (can be used multiple times). By default, all backends will
be updated.

——nocommit: If provided, it will pass commit=False to the backend. This means that the updates
will not become immediately visible and will depend on another explicit commit or the backend’s
commit strategy to complete the update.

Note: The ——nocommit argument is only supported by the Solr and ElasticSearch backends.

Examples:

Update everything.
./manage.py update_index --settings=settings.prod

Update everything with lots of information about what's going on.
./manage.py update_index --settings=settings.prod --verbosity=2

(continues on next page)

1.5. Management Commands 19

http://pypi.python.org/pypi/python-dateutil/1.5

Haystack Documentation, Release 2.5.0

(continued from previous page)

Update everything, cleaning up after deleted models.
./manage.py update_index —--remove --settings=settings.prod

Update everything changed in the last 2 hours.
./manage.py update_index --age=2 --settings=settings.prod

Update everything between Dec. 1, 2011 & Dec 31, 2011
./manage.py update_index —-start='2011-12-01T00:00:00" --end='2011-12-31T23:59:59" —-
—settings=settings.prod

Update just a couple apps.
./manage.py update_index blog auth comments --settings=settings.prod

Update just a single model (in a complex app).
./manage.py update_index auth.User --settings=settings.prod

Crazy Go-Nuts University
./manage.py update_index events.Event media news.Story —--start='2011-01-01T00:00:00 —-
—remove —--using=hotbackup --workers=12 --verbosity=2 --settings=settings.prod

Note: This command ONLY updates records in the index. It does NOT handle deletions unless the ——remove flag
is provided. You might consider a queue consumer if the memory requirements for ——remove don’t fit your needs.
Alternatively, you can use the RealtimeSignalProcessor, which will automatically handle deletions.

1.5.3 rebuild index

A shortcut for clear_index followed by update_index. It accepts any/all of the arguments of the following
arguments:

——age: Number of hours back to consider objects new. Useful for nightly reindexes (-—age=24).
Requires SearchIndexes to implement the get_updated_field method.

—-batch-size: Number of items to index at once. Default is 1000.
—-site: The site object to use when reindexing (like search_sites.mysite).

——-noinput: If provided, the interactive prompts are skipped and the index is unceremoniously wiped
out.

——remove: Remove objects from the index that are no longer present in the database.
——verbosity: If provided, dumps out more information about what’s being done.

* 0 = No output

¢ 1 = Minimal output describing what models were indexed and how many records.

2 = Full output, including everything from 1 plus output on each batch that is indexed, which
is useful when debugging.

—-using: Update only the named backend (can be used multiple times). By default, all backends will
be updated.

——nocommit: If provided, it will pass commit=False to the backend. This means that the update will not
become immediately visible and will depend on another explicit commit or the backend’s commit
strategy to complete the update.

20 Chapter 1. Getting Started

Haystack Documentation, Release 2.5.0

For when you really, really want a completely rebuilt index.

1.5.4 build solr schema

Once all of your SearchIndex classes are in place, this command can be used to generate the XML schema Solr
needs to handle the search data. Generates a Solr schema and solrconfig file that reflects the indexes using templates
under a Django template dir ‘search_configuration/*.xml’. If none are found, then provides defaults suitable for Solr
6.4.

It accepts the following arguments:

——filename: If provided, renders schema.xml from the template directory directly to a file instead of
stdout. Does not render solrconfig.xml

——using: Update only the named backend (can be used multiple times). By default all backends will
be updated.

——configure-directory: If provided, attempts to configure a core located in the given direc-
tory by removing the managed-schema.xml (renaming if it exists), configuring the core by
rendering the schema.xml and solrconfig.xml templates provided in the Django project’s
TEMPLATE_DIR/search_configuration directories.

——reload-core: If provided, attempts to automatically reload the solr core via the urls in the URL and
ADMIN_URL settings of the Solr entry in HAYSTACK_CONNECTIONS. Both must be provided.

Note: build_solr_schema --configure-directory=<dir> canbe used in isolation to drop configured
files anywhere one might want for staging to one or more solr instances through arbitrary means. It will render all
template files in the directory into the configure-directory

build_solr_schema --configure-directory=<dir> --reload-core can be used together to re-
configure and reload a core located on a filesystem accessible to Django in a one-shot mechanism with no further
requirements (assuming there are no errors in the template or configuration)

Note: build_solr_schema uses templates to generate the output files. Haystack provides default templates for
schema.xml and solrconfig.xml that are solr 6.5 compatible using some sensible defaults. If you would like
to provide your own template, you will need to place it in search_configuration/ inside a directory specified
by your app’s template directories settings. Examples:

/myproj/myapp/templates/search_configuration/schema.xml
/myproj/myapp/templates/search_configuration/sorlconfig.xml
/myproj/myapp/templates/search_configuration/otherfile.xml
...or...
/myproj/templates/search_configuration/schema.xml
/myproj/templates/search_configuration/sorlconfig.xml
/myproj/myapp/templates/search_configuration/otherfile.xml

Warning: This command does NOT automatically update the schema . xm1 file for you all by itself. You must
use —filename or —configure-directory to achieve this.

1.5. Management Commands 21

Haystack Documentation, Release 2.5.0

1.5.5 haystack_info

Provides some basic information about how Haystack is setup and what models it is handling. It accepts no arguments.
Useful when debugging or when using Haystack-enabled third-party apps.

1.6 (In)Frequently Asked Questions

1.6.1 What is Haystack?

Haystack is meant to be a portable interface to a search engine of your choice. Some might call it a search framework,
an abstraction layer or what have you. The idea is that you write your search code once and should be able to freely
switch between backends as your situation necessitates.

1.6.2 Why should | consider using Haystack?

Haystack is targeted at the following use cases:
* If you want to feature search on your site and search solutions like Google or Yahoo search don’t fit your needs.
* If you want to be able to customize your search and search on more than just the main content.
« If you want to have features like drill-down (faceting) or “More Like This”.

« If you want a interface that is non-search engine specific, allowing you to change your mind later without much
rewriting.

1.6.3 When should I not be using Haystack?
¢ Non-Model-based data. If you just want to index random data (flat files, alternate sources, etc.), Haystack isn’t
a good solution. Haystack is very Mode 1-based and doesn’t work well outside of that use case.

* Ultra-high volume. Because of the very nature of Haystack (abstraction layer), there’s more overhead involved.
This makes it portable, but as with all abstraction layers, you lose a little performance. You also can’t take full
advantage of the exact feature-set of your search engine. This is the price of pluggable backends.

1.6.4 Why was Haystack created when there are so many other search options?
The proliferation of search options in Django is a relatively recent development and is actually one of the reasons for
Haystack’s existence. There are too many options that are only partial solutions or are too engine specific.

Further, most use an unfamiliar API and documentation is lacking in most cases.

Haystack is an attempt to unify these efforts into one solution. That’s not to say there should be no alternatives, but
Haystack should provide a good solution to 80%-+ of the search use cases out there.

1.6.5 What’s the history behind Haystack?

Haystack started because of my frustration with the lack of good search options (before many other apps came out) and
as the result of extensive use of Djangosearch. Djangosearch was a decent solution but had a number of shortcomings,
such as:

* Tied to the models.py, so you’d have to modify the source of third-party (or django.contrib) apps in order to
effectively use it.

22 Chapter 1. Getting Started

Haystack Documentation, Release 2.5.0

* All or nothing approach to indexes. So all indexes appear on all sites and in all places.
* Lack of tests.

* Lack of documentation.

* Uneven backend implementations.

The initial idea was to simply fork Djangosearch and improve on these (and other issues). However, after stepping
back, I decided to overhaul the entire API (and most of the underlying code) to be more representative of what I
would want as an end-user. The result was starting afresh and reusing concepts (and some code) from Djangosearch
as needed.

As a result of this heritage, you can actually still find some portions of Djangosearch present in Haystack (especially
in the SearchIndex and SearchBackend classes) where it made sense. The original authors of Djangosearch
are aware of this and thus far have seemed to be fine with this reuse.

1.6.6 Why doesn’t <search engine X> have a backend included in Haystack?

Several possibilities on this.
1. Licensing

A common problem is that the Python bindings for a specific engine may have been released under an incom-
patible license. The goal is for Haystack to remain BSD licensed and importing bindings with an incompatible
license can technically convert the entire codebase to that license. This most commonly occurs with GPL’ed
bindings.

2. Lack of time

The search engine in question may be on the list of backends to add and we simply haven’t gotten to it yet. We
welcome patches for additional backends.

3. Incompatible API

In order for an engine to work well with Haystack, a certain baseline set of features is needed. This is often an
issue when the engine doesn’t support ranged queries or additional attributes associated with a search record.

4. We’re not aware of the engine

If you think we may not be aware of the engine you’d like, please tell us about it (preferably via the group
- http://groups.google.com/group/django-haystack/). Be sure to check through the backends (in case it wasn’t
documented) and search the history on the group to minimize duplicates.

1.7 Sites Using Haystack

The following sites are a partial list of people using Haystack. I’'m always interested in adding more sites, so please
find me (daniellindsley) via IRC or the mailing list thread.

1.7.1 LJWorld/Lawrence.com/KUSports

For all things search-related.
Using: Solr
* http://www2.ljworld.com/search/

* http://www2.ljworld.com/search/vertical/news.story/

1.7. Sites Using Haystack 23

http://groups.google.com/group/django-haystack/
http://www2.ljworld.com/search/
http://www2.ljworld.com/search/vertical/news.story/

Haystack Documentation, Release 2.5.0

* http://www2.ljworld.com/marketplace/
* http://www.lawrence.com/search/

* http://www.kusports.com/search/

1.7.2 AltWeeklies

Providing an API to story aggregation.
Using: Whoosh

* http://www.northcoastjournal.com/altweeklies/documentation/

1.7.3 Teachoo

Teachoo uses Haystack for its site search.
Using: Elasticsearch

* https://www.teachoo.com/

1.7.4 Trapeze

Various projects.
Using: Xapian
* http://www.trapeze.com/
* http://www.windmobile.ca/
* http://www.bonefishgrill.com/

* http://www.canadiantire.ca/ (Portions of)

1.7.5 Vickerey.com

For (really well done) search & faceting.
Using: Solr

* http://store.vickerey.com/products/search/

1.7.6 Eldarion

Various projects.
Using: Solr

* http://eldarion.com/

24

Chapter 1. Getting Started

http://www2.ljworld.com/marketplace/
http://www.lawrence.com/search/
http://www.kusports.com/search/
http://www.northcoastjournal.com/altweeklies/documentation/
https://www.teachoo.com/
http://www.trapeze.com/
http://www.windmobile.ca/
http://www.bonefishgrill.com/
http://www.canadiantire.ca/
http://store.vickerey.com/products/search/
http://eldarion.com/

Haystack Documentation, Release 2.5.0

1.7.7 Sunlight Labs

For general search.
Using: Whoosh & Solr
* http://sunlightlabs.com/

* http://subsidyscope.com/

1.7.8 NASA

For general search.

Using: Solr

* An internal site called SMD Spacebook 1.1.

* http://science.nasa.gov/

1.7.9 AllForLocal

For general search.

e http://www.allforlocal.com/

1.7.10 HUGE

Various projects.
Using: Solr
* http://hugeinc.com/

* http://houselogic.com/

1.7.11 Brick Design

For search on Explore.
Using: Solr
* http://bricksf.com/
* http://explore.org/

1.7.12 Winding Road

For general search.
Using: Solr

* http://www.windingroad.com/

1.7. Sites Using Haystack

25

http://sunlightlabs.com/
http://subsidyscope.com/
http://science.nasa.gov/
http://www.allforlocal.com/
http://hugeinc.com/
http://houselogic.com/
http://bricksf.com/
http://explore.org/
http://www.windingroad.com/

Haystack Documentation, Release 2.5.0

1.7.13 Reddit

For Reddit Gifts.
Using: Whoosh
* http://redditgifts.com/

1.7.14 Pegasus News

For general search.
Using: Xapian

* http://www.pegasusnews.com/

1.7.15 Rampframe

For general search.
Using: Xapian

* http://www.rampframe.com/

1.7.16 Forkinit

For general search, model-specific search and suggestions via MLT.
Using: Solr
* http://forkinit.com/

1.7.17 Structured Abstraction

For general search.
Using: Xapian
* http://www.structuredabstraction.com/

* http://www.delivergood.org/

1.7.18 CustomMade

For general search.
Using: Solr

* http://www.custommade.com/

26 Chapter 1. Getting Started

http://redditgifts.com/
http://www.pegasusnews.com/
http://www.rampframe.com/
http://forkinit.com/
http://www.structuredabstraction.com/
http://www.delivergood.org/
http://www.custommade.com/

Haystack Documentation, Release 2.5.0

1.7.19 University of the Andes, Dept. of Political Science

For general search & section-specific search. Developed by Monoku.
Using: Solr
* http://www.congresovisible.org/

* http://www.monoku.com/

1.7.20 Christchurch Art Gallery

For general search & section-specific search.
Using: Solr
* http://christchurchartgallery.org.nz/search/

* http://christchurchartgallery.org.nz/collection/browse/

1.7.21 DevCheatSheet.com

For general search.
Using: Xapian

* http://devcheatsheet.com/

1.7.22 TodasLasRecetas

For search, faceting & More Like This.
Using: Solr
* http://www.todaslasrecetas.es/receta/s/?q=langostinos

* http://www.todaslasrecetas.es/receta/9526/brochetas-de-langostinos

1.7.23 AstroBin

For general search.
Using: Solr

* http://www.astrobin.com/

1.7.24 European Paper Company

For general search.
Using: 77?7

* http://europeanpaper.com/

1.7. Sites Using Haystack

27

http://www.congresovisible.org/
http://www.monoku.com/
http://christchurchartgallery.org.nz/search/
http://christchurchartgallery.org.nz/collection/browse/
http://devcheatsheet.com/
http://www.todaslasrecetas.es/receta/s/?q=langostinos
http://www.todaslasrecetas.es/receta/9526/brochetas-de-langostinos
http://www.astrobin.com/
http://europeanpaper.com/

Haystack Documentation, Release 2.5.0

1.7.25 mtn-op

For general search.
Using: 77?

* http://mountain-op.com/

1.7.26 Crate

Crate is a PyPI mirror/replacement. It’s using Haystack to power all search & faceted navigation on the site.
Using: Elasticsearch

* https://crate.io/

1.7.27 Pix Populi

Pix Populi is a popular French photo sharing site.
Using: Solr
* http://www.pix-populi.fr/

1.7.28 LocalWiki

LocalWiki is a tool for collaborating in local, geographic communities. It’s using Haystack to power search on every
LocalWiki instance.

Using: Solr
* http://localwiki.org/

1.7.29 Pitchup

For faceting, geo and autocomplete.
Using: 77?

* http://www.pitchup.com/search/

1.7.30 Gidsy

Gidsy makes it easy for anyone to organize and find exciting things to do everywhere in the world.
For activity search, area pages, forums and private messages.
Using: Elasticsearch

* https://gidsy.com/

* https://gidsy.com/search/

* https://gidsy.com/forum/

28 Chapter 1. Getting Started

http://mountain-op.com/
https://crate.io/
http://www.pix-populi.fr/
http://localwiki.org/
http://www.pitchup.com/search/
https://gidsy.com/
https://gidsy.com/search/
https://gidsy.com/forum/

Haystack Documentation, Release 2.5.0

1.7.31 GroundCity

Groundcity is a Romanian dynamic real estate site.
For real estate, forums and comments.
Using: Whoosh

* http://groundcity.ro/cautare/

1.7.32 Docket Alarm
Docket Alarm allows people to search court dockets across the country. With it, you can search court dockets in the
International Trade Commission (ITC), the Patent Trial and Appeal Board (PTAB) and All Federal Courts.
Using: Elasticsearch
* https://www.docketalarm.com/search/ITC
* https://www.docketalarm.com/search/PTAB

* https://www.docketalarm.com/search/dockets

1.7.33 Educreations

Educreations makes it easy for anyone to teach what they know and learn what they don’t with a recordable whiteboard.
Haystack is used to provide search across users and lessons.

Using: Solr

* http://www.educreations.com/browse/

1.8 Haystack-Related Applications

1.8.1 Sub Apps

These are apps that build on top of the infrastructure provided by Haystack. Useful for essentially extending what
Haystack can do.

queued_search

http://github.com/django-haystack/queued_search (2.X compatible)

Provides a queue-based setup as an alternative to RealtimeSignalProcessor or constantly running the
update_index command. Useful for high-load, short update time situations.

celery-haystack

https://github.com/jezdez/celery-haystack (1.X and 2.X compatible)

Also provides a queue-based setup, this time centered around Celery. Useful for keeping the index fresh per model
instance or with the included task to call the update_index management command instead.

1.8. Haystack-Related Applications 29

http://groundcity.ro/cautare/
https://www.docketalarm.com/search/ITC
https://www.docketalarm.com/search/PTAB
https://www.docketalarm.com/search/dockets
http://www.educreations.com/browse/
http://github.com/django-haystack/queued_search
https://github.com/jezdez/celery-haystack

Haystack Documentation, Release 2.5.0

haystack-rqueue

https://github.com/mandx/haystack-rqueue (2.X compatible)

Also provides a queue-based setup, this time centered around RQ. Useful for keeping the index fresh using ./
manage.py rgworker.

django-celery-haystack

https://github.com/mixcloud/django-celery-haystack-SearchIndex

Another queue-based setup, also around Celery. Useful for keeping the index fresh.

saved_searches

http://github.com/django-haystack/saved_searches (2.X compatible)

Adds personalization to search. Retains a history of queries run by the various users on the site (including anonymous
users). This can be used to present the user with their search history and provide most popular/most recent queries on
the site.

saved-search

https://github.com/DirectEmployers/saved-search

An alternate take on persisting user searches, this has a stronger focus on locale-based searches as well as further
integration.

haystack-static-pages

http://github.com/trapeze/haystack-static-pages

Provides a simple way to index flat (non-model-based) content on your site. By using the management command that
comes with it, it can crawl all pertinent pages on your site and add them to search.

django-tumbleweed

http://github.com/mcroydon/django-tumbleweed

Provides a tumblelog-like view to any/all Haystack-enabled models on your site. Useful for presenting date-based
views of search data. Attempts to avoid the database completely where possible.

1.8.2 Haystack-Enabled Apps

These are reusable apps that ship with SearchIndexes, suitable for quick integration with Haystack.
* django-faq (freq. asked questions app) - http://github.com/benspaulding/django-faq
* django-essays (blog-like essay app) - http://github.com/bkeating/django-essays
* gtalug (variety of apps) - http://github.com/myles/gtalug
* sciencemuseum (science museum open data) - http://github.com/simonw/sciencemuseum

* vz-wiki (wiki) - http://github.com/jobscry/vz-wiki

30 Chapter 1. Getting Started

https://github.com/mandx/haystack-rqueue
https://github.com/mixcloud/django-celery-haystack-SearchIndex
http://github.com/django-haystack/saved_searches
https://github.com/DirectEmployers/saved-search
http://github.com/trapeze/haystack-static-pages
http://github.com/mcroydon/django-tumbleweed
http://github.com/benspaulding/django-faq
http://github.com/bkeating/django-essays
http://github.com/myles/gtalug
http://github.com/simonw/sciencemuseum
http://github.com/jobscry/vz-wiki

Haystack Documentation, Release 2.5.0

* ffmff (events app) - http://github.com/stefreak/ffmff
* Dinette (forums app) - http://github.com/uswaretech/Dinette
« fiftystates_site (site) - http://github.com/sunlightlabs/fiftystates_site

* Open-Knesset (site) - http://github.com/ofri/Open-Knesset

1.9 Installing Search Engines

1.9.1 Solr

Official Download Location: http://www.apache.org/dyn/closer.cgi/lucene/solr/

Solr is Java but comes in a pre-packaged form that requires very little other than the JRE and Jetty. It’s very performant
and has an advanced featureset. Haystack suggests using Solr 6.x, though it’s possible to get it working on Solr 4.x+
with a little effort. Installation is relatively simple:

For Solr 6.X:

curl -LO https://archive.apache.org/dist/lucene/solr/x.Y.0/solr-X.Y.0.tgz
mkdir solr

tar -C solr —xf solr-X.Y.0.tgz —--strip-components=1

cd solr

./bin/solr start # start solr

./bin/solr create -c tester -n basic_config # create core named 'tester'

By default this will create a core with a managed schema. This setup is dynamic but not useful
for haystack, and we’ll need to configure solr to use a static (classic) schema. Haystack can gen-
erate a viable schema.xml and solrconfig.xml for you from your application and reload the core for
you (once Haystack is installed and setup). To do this run: ./manage.py build_solr_schema
—-—configure-directory=<CoreConfigDif> —--reload-core. Inthis example CoreConfigDir is some-

thing like . ./solr-6.5.0/server/solr/tester/conf, and ——-reload-core is what triggers reloading
of the core. Please refer to build_solr_schema in the management-commands for required configuration.

For Solr 4.X:

curl -LO https://archive.apache.org/dist/lucene/solr/4.10.2/so0lr-4.10.2.tgz
tar xvzf solr-4.10.2.tgz

cd solr-4.10.2

cd example

java —jar start.jar

You’ll need to revise your schema. You can generate this from your application (once Haystack is installed and setup)
by running . /manage.py build_solr_schema. Take the output from that command and place itin solr—4.
10.2/example/solr/collectionl/conf/schema.xml. Then restart Solr.

Warning: Please note; the template filename, the file YOU supply under TEMPLATE_DIR/search_configuration
has changed to schema.xml from solr.xml. The previous template name solr.xml was a legacy holdover from older
versions of solr.

You’ll also need to install the pysolr client library from PyPI:

$ pip install pysolr

1.9. Installing Search Engines 31

http://github.com/stefreak/ffmff
http://github.com/uswaretech/Dinette
http://github.com/sunlightlabs/fiftystates_site
http://github.com/ofri/Open-Knesset
http://www.apache.org/dyn/closer.cgi/lucene/solr/

Haystack Documentation, Release 2.5.0

More Like This

On Solr 6. X+ “More Like This” functionality is enabled by default. To enable the “More Like This” functionality
on earlier versions of Solr, you’ll need to enable the MoreLikeThisHandler. Add the following line to your
solrconfig.xml file within the config tag:

<requestHandler name="/mlt" class="solr.MorelLikeThisHandler" />

Spelling Suggestions

To enable the spelling suggestion functionality in Haystack, you’ll need to enable the Spel1CheckComponent.

The first thing to do is create a special field on your SearchIndex class that mirrors the text field, but uses
FacetCharField. This disables the post-processing that Solr does, which can mess up your suggestions. Some-
thing like the following is suggested:

class MySearchIndex (indexes.SearchIndex, indexes.Indexable):

text = indexes.CharField(document=True, use_template=True)
... normal fields then...
suggestions = indexes.FacetCharField()

def prepare(self, obj):
prepared_data = super () .prepare (obj)
prepared_data['suggestions'] = prepared_datal['text']
return prepared_data

Then, you enable it in Solr by adding the following line to your solrconfig.xml file within the config tag:

<searchComponent name="spellcheck" class="solr.SpellCheckComponent">

<str name="queryAnalyzerFieldType">text_general</str>
<lst name="spellchecker">
<str name="name">default</str>
<str name="field">text</str>
<str name="classname">solr.DirectSolrSpellChecker</str>
<str name="distanceMeasure">internal</str>
<float name="accuracy">0.5</float>
<int name="maxEdits">2</int>
<int name="minPrefix">1</int>
<int name="maxInspections">5</int>
<int name="minQueryLength">4</int>
<float name="maxQueryFrequency">0.01</float>
</lst>
</searchComponent>

Then change your default handler from:

<requestHandler name="/select" class="solr.SearchHandler">
<lst name="defaults">
<str name="echoParams">explicit</str>
<int name="rows">10</int>
</lst>
</requestHandler>

... to...:

32 Chapter 1. Getting Started

Haystack Documentation, Release 2.5.0

<requestHandler name="/select" class="solr.SearchHandler">
<lst name="defaults">
<str name="echoParams">explicit</str>
<int name="rows">10</int>

<str name="spellcheck.dictionary">default</str>
<str name="spellcheck">on</str>
<str name="spellcheck.extendedResults">true</str>
<str name="spellcheck.count">10</str>
<str name="spellcheck.alternativeTermCount">5</str>
<str name="spellcheck.maxResultsForSuggest">5</str>
<str name="spellcheck.collate">true</str>
<str name="spellcheck.collateExtendedResults">true</str>
<str name="spellcheck.maxCollationTries">10</str>
<str name="spellcheck.maxCollations">5</str>
</lst>
<arr name="last-components">
<str>spellcheck</str>

</arr>

</requestHandler>

Be warned that the <str name="field">suggestions</str> portion will be specific to your
SearchIndex classes (in this case, assuming the main field is called text).

1.9.2 Elasticsearch

Elasticsearch is similar to Solr — another Java application using Lucene — but focused on ease of deployment and
clustering. See https://www.elastic.co/products/elasticsearch for more information.

Haystack currently supports Elasticsearch 1.x, 2.x, and 5.x.

Follow the instructions on https://www.elastic.co/downloads/elasticsearch to download and install Elasticsearch and
configure it for your environment.

You’ll also need to install the Elasticsearch binding: elasticsearch for the appropriate backend version — for example:

$ pip install "elasticsearch>=5,<6"

1.9.3 Whoosh

Official Download Location: https://github.com/whoosh-community/whoosh

Whoosh is pure Python, so it’s a great option for getting started quickly and for development, though it does work
for small scale live deployments. The current recommended version is 1.3.1+. You can install via PyPI using sudo
easy_install whooshor sudo pip install whoosh.

Note that, while capable otherwise, the Whoosh backend does not currently support “More Like This” or faceting.
Support for these features has recently been added to Whoosh itself & may be present in a future release.

1.9.4 Xapian

Official Download Location: http://xapian.org/download

Xapian is written in C++ so it requires compilation (unless your OS has a package for it). Installation looks like:

1.9. Installing Search Engines 33

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://pypi.python.org/pypi/elasticsearch/
https://github.com/whoosh-community/whoosh
http://pypi.python.org/pypi/Whoosh/
http://xapian.org/download

Haystack Documentation, Release 2.5.0

curl -0 http://oligarchy.co.uk/xapian/1.2.18/xapian—-core-1.2.18.tar.xz
curl -0 http://oligarchy.co.uk/xapian/1.2.18/xapian-bindings-1.2.18.tar.xz

unxz xapian-core-1.2.18.tar.xz
unxz xapian-bindings-1.2.18.tar.xz

tar xvf xapian-core-1.2.18.tar
tar xvf xapian-bindings-1.2.18.tar

cd xapian-core-1.2.18
./configure

make

sudo make install

cd ..

cd xapian-bindings-1.2.18
./configure

make

sudo make install

Xapian is a third-party supported backend. It is not included in Haystack proper due to licensing. To use it, you
need both Haystack itself as well as xapian-haystack. You can download the source from http://github.com/
notanumber/xapian-haystack/tree/master. Installation instructions can be found on that page as well. The backend,
written by David Sauve (notanumber), fully implements the SearchQuerySet API and is an excellent alternative to
Solr.

1.10 Debugging Haystack

There are some common problems people run into when using Haystack for the first time. Some of the common
problems and things to try appear below.

Note: As a general suggestion, your best friend when debugging an issue is to use the pdb library included with
Python. By dropping a import pdb; pdb.set_trace () in your code before the issue occurs, you can step
through and examine variable/logic as you progress through. Make sure you don’t commit those pdb lines though.

1.10.1 “No module named haystack.”

This problem usually occurs when first adding Haystack to your project.
* Are you using the haystack directory within your d jango—-haystack checkout/install?
¢ Is the haystack directory on your PYTHONPATH? Alternatively, is haystack symlinked into your project?

e Start a Django shell (. /manage.py shell) and try import haystack. You may receive a different,
more descriptive error message.

* Double-check to ensure you have no circular imports. (i.e. module A tries importing from module B which is
trying to import from module A.)

34 Chapter 1. Getting Started

http://github.com/notanumber/xapian-haystack/tree/master
http://github.com/notanumber/xapian-haystack/tree/master

Haystack Documentation, Release 2.5.0

1.10.2 “No results found.” (On the web page)
Several issues can cause no results to be found. Most commonly it is either not running a rebuild_index to
populate your index or having a blank document=True field, resulting in no content for the engine to search on.

* Do you have a search_indexes.py located within an installed app?

* Do you have data in your database?

* Have youruna . /manage.py rebuild_index to index all of your content?

e Try running . /manage.py rebuild_index -v2 for more verbose output to ensure data is being pro-
cessed/inserted.

 Start a Django shell (. /manage.py shell) and try:

>>> from haystack.query import SearchQuerySet
>>> sqgs = SearchQuerySet () .all()
>>> sgs.count ()

* You should get back an integer > 0. If not, check the above and reindex.

>>> sqgs[0] # Should get back a SearchResult object.
>>> sqgs[0].id # Should get something back like 'myapp.mymodel.Il'.
>>> sqgs[0].text # ... or whatever your document=True field is.

¢ If you get back either u' ' or None, it means that your data isn’t making it into the main field that gets searched.
You need to check that the field either has a template that uses the model data, a model_attr that pulls data
directly from the model or a prepare/prepare_F0O0 method that populates the data at index time.

* Check the template for your search page and ensure it is looping over the results properly. Also ensure that
it’s either accessing valid fields coming back from the search engine or that it’s trying to access the associated
model viathe { { result.object.foo }} lookup.

1.10.3 “LockError: [Errno 17] File exists: ‘/path/to/whoosh_index/_MAIN_LOCK’”

This is a Whoosh-specific traceback. It occurs when the Whoosh engine in one process/thread is locks the in-
dex files for writing while another process/thread tries to access them. This is a common error when using
RealtimeSignalProcessor with Whoosh under any kind of load, which is why it’s only recommended for
small sites or development.

The only real solution is to set up a cron job that runs ./manage.py rebuild_index (optionally with
——age=24) that runs nightly (or however often you need) to refresh the search indexes. Then disable the use of
the RealtimeSignalProcessor within your settings.

The downside to this is that you lose real-time search. For many people, this isn’t an issue and this will allow you to
scale Whoosh up to a much higher traffic. If this is not acceptable, you should investigate either the Solr or Xapian
backends.

1.10.4 “Failed to add documents to Solr: [Reason: None]”

This is a Solr-specific traceback. It generally occurs when there is an error with your
HAYSTACK_CONNECTIONS[<alias>]['URL']. Since Solr acts as a webservice, you should test the
URL in your web browser. If you receive an error, you may need to change your URL.

This can also be caused when using old versions of pysolr (2.0.9 and before) with httplib2 and including a trailing
slash in your HAYSTACK_CONNECTIONS [<alias>] ['URL']. If this applies to you, please upgrade to the current
version of pysolr.

1.10. Debugging Haystack 35

Haystack Documentation, Release 2.5.0

73

1.10.5 “Got an unexpected keyword argument ‘boost

This is a Solr-specific traceback. This can also be caused when using old versions of pysolr (2.0.12 and before). Please
upgrade your version of pysolr (2.0.13+4).

1.11 Changelog

1.11.1 %%version%% (unreleased)

* Docs: don’t tell people how to install Python packages. [Chris Adams]
It’s 2018, “pip install <packagename>" is the only thing we should volunteer.

» Update Elasticsearch documentation. [Chris Adams]

Add 5.x to supported versions

Replace configuration and installation information with pointers to the official docs

Stop mentioning pyes since it’s fallen behind the official client in awareness

Don’t tell people how to install Python packages
* Fix get_coords() calls. [Chris Adams]
* Update README & contributor guide. [Chris Adams]
¢ Blacken. [Chris Adams]
* Isort everything. [Chris Adams]
» Update code style settings. [Chris Adams]
Prep for Blackening
* Remove PyPy / Django 2 targets. [Chris Adams]
We’ll restore these when pypy3 is more mainstream
* Use default JRE rather than requiring Oracle. [Chris Adams]
OpenJDK is also supported and that does not require accepting a license.
* Changed ESS5 .x test skip message to match the friendlier 2.x one. [Bruno Marques]
* Fixed faceted search and autocomplete test. [Bruno Marques]
* Removed ES5 code that actually never runs. [Bruno Marques]
* Fixed kwargs in ES5’s build_search_query. [Bruno Marques]
* ESS5: fixed MLT, within and dwithin. [Bruno Marques]
* Assorted ES5.x fixes. [Bruno Marques]
* Re-added sorting, highlighting and suggesting to ES5.x backend. [Bruno Marques]
* Fixed filters and fuzziness on ES5.x backend. [Bruno Marques]
¢ Added Java 8 to Travis dependencies. [Bruno Marques]
« Started Elasticsearch 5.x support. [Bruno Marques]
* Style change to avoid ternary logic on the end of a line. [Chris Adams]

This is unchanged from #1475 but avoids logic at the end of the line

36 Chapter 1. Getting Started

Haystack Documentation, Release 2.5.0

Do not raise when model cannot be searched. [benvand]
— Return empty string.
— Test.
Merge pull request #1616 from hornn/batch_order. [Chris Adams]
Order queryset by pk in update batching
Order queryset by pk in update batching This solves #1615. [Noa Horn]

The queryset is not ordered by pk by default, however the batching filter relies on the results being ordered.
When the results are not ordered by pk, some objects are not indexed. This can happen when the underlying
database doesn’t have default ordering by pk, or when the model or index_queryset() have a different ordering.

Merge pull request #1612 from hornn/patch-1. [Chris Adams]
Construct django_ct based on model instead of object
Update indexes.py. [Noa Horn]

Construct django_ct based on model instead of object. This solves issue #1611 - delete stale polymorphic model
documents.

Merge pull request #1610 from erez-o/patch-1. [Chris Adams]

Update installing_search_engines.rst

Update installing_search_engines.rst. [Chris Adams]

Update installing_search_engines.rst. [Erez Oxman]

Updated docs about Solr 6. X+ “More like this”

Avoid UnicodeDecodeError when an error occurs while resolving attribute lookups. [Chris Adams]
Thanks to Martin Burchell (@martinburchell) for the patch in #1599

Fix UnicodeDecodeError in error message. [Martin Burchell]

Because of the way the default __repr__ works in Django models, we can get a UnicodeDecodeError when
creating the SearchFieldError if a model does not have an attribute. eg: UnicodeDecodeError: ‘ascii’ codec
can’t decode byte 0xc3 in position 11: ordinal not in range(128) and this hides the real problem.

I have left alone the other SearchFieldError in this method because current_obj is always None. The error
message is a bit strange in this case but it won’t suffer from the same problem.

Add max retries option to rebuild_index, matching update_index. [Chris Adams]

Thanks to @2miksyn for the patch in #1598

Update rebuild_index.py. [2miksyn]

Add max-retries argument to rebuild_index managment command. This is useful for debug at development time

Add Django 2.1 compatibility. [Tim Graham]

1.11.2 v2.8.1 (2018-03-16)

Merge pull request #1596 from klass-ivan/collecting-deep-attr-through- m2m. [Chris Adams]
Fixed collection of deep attributes through m2m relation

Fixed collection of deep attributes through m2m relation. [Ivan Klass]

. Changelog 37

Haystack Documentation, Release 2.5.0

1.11.3 v2.8.0 (2018-03-09)

* Optimize ElasticSearch backend (closes #1590) [Chris Adams]

Thanks to @klass-ivan for the patch
* [elasticsearch backend] - Fixed index re-obtaining for every field. [Ivan Klass]
* Django 2.0 compatibility (closes #1582) [Chris Adams]

Thanks to @mpauly and @timgraham for working on this and @dani0805, @andrewbenedictwallace, @rabid-
cicada, @webtweakers, @nadimtuhin, and @JonLevischi for testing.

* Implemented TG’s review comments. [Martin Pauly]
* Drop support for old django versions. [Martin Pauly]
* For some reason the mock needs to return something. [Martin Pauly]
* Django 2.0 changes to tests. [Martin Pauly]
* Dropped a few unnecessary interactive=False. [Martin Pauly]
* Replace get_coords() by coords in more places. [Martin Pauly]
¢ Ignore python2 Django2 combination. [Martin Pauly]
* Drop tests for Django < 1.11. [Martin Pauly]
» Update requirements in setup.py. [Martin Pauly]
» Update imports to drop Django 1.8 support. [Martin Pauly]
* Fix intendation error in tox.ini. [Martin Pauly]
* Merge https://github.com/django-haystack/django-haystack. [Martin Pauly]
* Added a test for exclusion of M2M fields for ModelSearchIndex. [Martin Pauly]
¢ In Django 2.0 ForeinKeys must have on_delete. [Martin Pauly]
* Assuming that everyone who wants to run these tests upgrades pysolr. [Martin Pauly]
* Django 2.0 is not compatible with python 2.7. [Martin Pauly]
* Deal with tuples and strings. [Martin Pauly]
* Fix a bug due to string __version___ of pysolr. [Martin Pauly]
* Fix tox. [Martin Pauly]
* Mocking order. [Martin Pauly]
* Reverse order. [Martin Pauly]
» Update test - the interactive kwarg is only passed to the clear_index command. [Martin Pauly]
* Revert “Trigger travis build” [Martin Pauly]
This reverts commit 7a9ac3824d7c6d5a9de63e4144ccb8c78daf60do.
e Trigger travis build. [Martin Pauly]
* Update authors. [Martin Pauly]
» Update tests. [Martin Pauly]
» Update imports. [Martin Pauly]

* Fix missing attribute rel. [Martin Pauly]

38 Chapter 1. Getting Started

https://github.com/django-haystack/django-haystack

Haystack Documentation, Release 2.5.0

Add the corresponding option for update_index. [Martin Pauly]

Fix import order. [Martin Pauly]

Exclude unused options for call of clear_index and update_index. [Martin Pauly]
Merge pull request #1576 from claudep/pep479. [Chris Adams]
Replaced deprecated Stoplteration by simple return

Replaced deprecated Stoplteration by simple return. [Claude Paroz]
Compliance to PEP 479.

Merge pull request #1588 from bit/patch-1. [Justin Caratzas]

make Baselnput.__repr__ for in python3

Update inputs.py. [bit]

Make Baselnput.__repr__ for in python3. [bit]

remove call to __unicode__

1.11.4 v2.7.0 (2018-01-29)

Use Python 3-compatible version comparison. [Chris Adams]

Add Django 1.11 and Python 3.6 to tox config. [Chris Adams]

Tests use pysolr version_info to work on Python 3.6. [Chris Adams]
Upgrade dependencies. [Chris Adams]

Align haystack’s version attributes with pysolr. [Chris Adams]
__version___ = pkg resource string version_info = more usable tuple

Fixed order_by multiple fields in whoosh backend. [Chris Adams]

Thanks @rjhelms and @ TTGmarkad for the patch

Closes #604

Fixed order_by multiple fields in whoosh backend. [Rob Hailman]
Implemented fix as suggested in issue #604

Merge pull request #1551 from RabidCicada/uuid-pk-fix. [Chris Adams]
Uuid pk fix

Fixed final bug with test_related_load_all_queryset test. [Kyle Stapp]
Fixing errors. [Kyle Stapp]

Initial attempt at adding testing framework for uuid models. [Kyle Stapp]
Coerce the pk string to the type that matches the models pk object. [Kyle Stapp]
Merge pull request #1555 from whyscream/django-pinning. [Chris Adams]
Fix django version pinning in setup.py

Fix django pinning in setup.py. [Tom Hendrikx]

Remove unused import. [Chris Adams]

. Changelog

39

Haystack Documentation, Release 2.5.0

Update_index: remove dead variable assignment. [Chris Adams]

This declaration was meaningless since the value would be unconditionally overwritten by the fotal = gs.count()
statement above on the next loop iteration, before anything read the value.

PEP-8. [Chris Adams]

LocationField.convert() will raise TypeError for unknown inputs. [Chris Adams]
Whoosh: prevent more_like_this from hitting an uninitialized variable. [Chris Adams]
This was uncommon but previously possible

Remove dead code from Whoosh backend. [Chris Adams]

PEP-8. [Chris Adams]

Merge pull request #1526 from RabidCicada/better-default-configs. [Chris Adams]
Better default configs

Comment editing. [Chris Adams]

Adding the template updates I forgot. [Kyle Stapp]

Merge pull request #1544 from jbzdak/jbzdak-patch. [Chris Adams]

Update haystack.generic_views.SearchView to handle empty GET requests
Update generic_views.py. [Jacek Bzdak]

Fix for inconsistent behavior when GET parameters are present.

Merge pull request #1541 from alasdairnicol/patch-1. [Chris Adams]

Add link to 2.5.x docs

Add link to 2.5.x docs. [Alasdair Nicol]

Updated config setting for solr 6.5. [Jaimin]

Updated documentation to enable spellcheck for Solr 6.5.

Add load_all to the generic views form kwargs. [Alex Tomkins]

The deprecated views in views.py automatially pass load_all to the search form. Class based generic views will
now match this behaviour.

Update who_uses.rst. [davneet4u]

Update who_uses.rst. [davneet4u]

Added teachoo to sites using. [davneet4u]

Merge pull request #1527 from palmeida/patch-1. [Chris Adams]

Remove extraneous word

Remove extraneous word. [Paulo Almeida]

Merge pull request #1530 from tomkins/travis-elasticsearch. [Chris Adams]
Fix elasticsearch installation in travis

Fix elasticsearch installation in travis. [Alex Tomkins]

Recent travis updates installed a later version of elasticsearch by default, so we need to force a downgrade to
test the right versions.

40

Chapter 1. Getting Started

Haystack Documentation, Release 2.5.0

Changed GeoDjango Link. [Mohit Khandelwal]

Changed GeoDjango link from geodjango.org to https://docs.djangoproject.com/en/1.11/ref/contrib/gis/
Ensure that custom highlighter tests consistently clean up monkey- patches. [Chris Adams]

This didn’t cause problems currently but there’s no point in leaving a trap for the future.

Prefer full import path for Highlighter. [Chris Adams]

This maintains compatibility with existing code but updates the docs & tests to use haystack.utils.highlighting
rather than just haystack.utils to import Highlighter.

PEP-8. [Chris Adams]

Update default identifier to support UUID primary keys. [Chris Adams]

Thanks to @rabidcicada for the patch & tests!

Closes #1498 Closes #1497 Closes #1515

Merge pull request #1479 from mjl/mjl-issue-1077. [Chris Adams]
rebuild_index slowdown fix (#1077)

Merge remote-tracking branch ‘upstream/master’ into mjl-issue-1077. [Martin J. Laubach]
Merge branch ‘1504-solr-6-by-default’ [Chris Adams]

Documentation copy-editing. [Chris Adams]

Tidy build_solr_schema help text and exceptions. [Chris Adams]
Build_solr_schema: reload should not assume the backend name. [Chris Adams]
Attempt to fix on Travis. I guess it runs from different directory. [Kyle T Stapp]

Cleaner approach based on acdh’s comments. We don’t carry around baggage. .. .but I also am not worried that
random lines will get inserted into alien future configs. [Kyle T Stapp]

Updated docs to add warning about template filename change. Fixed typo. [Kyle T Stapp]
Removed Unnecessary stopword files as requested. [Kyle T Stapp]
Updated docs to match new implementation. [Kyle T Stapp]
Tidying test suite. [Chris Adams]
— Remove some test utilities which were only used once or (after refactoring) not at all
— PEP-8 cleanup
Tidy Solr backend tests. [Chris Adams]
— Use assertSetEqual for prettier debug output on failure
— Whitespace around operators
Update build_solr_schema arguments. [Chris Adams]
— Use longer names for command-line options
— Tidy variable names & error messages
Tests: better name for Solr-specific management commands. [Chris Adams]
This makes things like editor open-by-name shortcuts less confusing
Update Solr management command tests. [Chris Adams]

— Use os.path.join for filesystem path construction

. Changelog 41

https://docs.djangoproject.com/en/1.11/ref/contrib/gis/

Haystack Documentation, Release 2.5.0

— PEP-8 variable naming, whitespace
— Use assertGreater for str.find checks on rendered XML
Solr: ensure that the default document field is always applied. [Chris Adams]

This is normally moot but newer versions of Solr have deprecated the <defaultSearchField> configuration option
and certain Haystack queries may break if you have removed that configuration element.

Update Solr spelling suggestion handling. [Chris Adams]

The support matrix for this is a problem since the Solr response format changes based on the version, configu-
ration, and query parameters (i.e. spellcheck.collateExtendedResults) so this is moved into a separate function
which logs errors and honors the backend fail silently setting.

This has been tested using Solr 6.4 and 6.5 with both the regular and collateExtendedResults formats.
Addressing Chris’ comments on comment style :) >.< [Kyle T Stapp]
Addressing Chris’ comments on boolean check. [Kyle T Stapp]

Moved constants. HAY STACK_DOCUMENT_FIELD to constants. DOCUMENT_FIELD to follow convention.
[Kyle T Stapp]

Test Solr launcher updates. [Chris Adams]
— Ensure the log directory exists
— Remove dead code
— Remove GC_LOG_OPTS assignments
Build_solr_schema tidying. [Chris Adams]
— Construct filesystem paths using os.path
— Remove need to use traceback
— Avoid dealing with HTTP request URL encoding
Build_solr_schema: less abbreviated keyword argument name. [Chris Adams]
Tidy imports. [Chris Adams]
PEP-8. [Chris Adams]
PEP-8. [Chris Adams]
Remove unused imports. [Chris Adams]
Run isort on files updated in this branch. [Chris Adams]
Merge and deconflict of upstream PEP8 changes. [Kyle T Stapp]
PEPS Fixes. Mostly ignoring line length PEP violations due to conciseness of assertStatements. [Kyle T Stapp]
Python 3 compatibility updates. [Kyle T Stapp]

Allow overriding collate for spellcheck at most entrypoints that accept kwargs (search mlt etc).
get_spelling_suggestions() will need to be updated. [Kyle T Stapp]

Fixing a problem introduced in build_template. [Kyle T Stapp]

Working template management and tests. Lots of plumbing to test. More tests to come soon. [Kyle T Stapp]
Final Fixes to support 6.4.0 and 6.5.0 spelling suggestions. [Kyle T Stapp]

Thinking solr versoin is wrong. [Kyle T Stapp]

Printing raw response that I found existed:) [Kyle T Stapp]

42

Chapter 1. Getting Started

Haystack Documentation, Release 2.5.0

More troubleshooting and fixing old test back to original check. [Kyle T Stapp]
More troubleshooting. [Kyle T Stapp]

Fix wrong object in test for spelling suggestions. [Kyle T Stapp]

More troubleshooting. [Kyle T Stapp]

More troubleshooting. [Kyle T Stapp]

Troubleshooting travis failure that is not replicatable here. [Kyle T Stapp]

Adjusting matrix to include django 1.11. Adjusting wait_for_solr script to try to ping correct location. Adding
ping handler. [Kyle T Stapp]

Trying to get a travis platform that supports jdk setting. [Kyle T Stapp]
Attempting to get travis to see jdk8 request. [Kyle T Stapp]
Fix result_class swap failure. [Kyle T Stapp]

Fix Collation based results. Add future plumbing for returning more than one ‘suggestion’ but keep current
behavior. Update schema definition to get rid of _text_ [Kyle T Stapp]

Fix LiveSolrSearchQueryTestCase. Specifically spellcheck. Added spellcheck to select requestHandler and
fixed parsing changes needed in core on our side. [Kyle T Stapp]

Fix LiveSolrMoreLikeThisTestCase. Also fix the deferred case (whoops) [Kyle T Stapp]
Fix LiveSolrMoreLikeThisTestCase. [Kyle T Stapp]
Fixed LiveSolrAutocompleteTestCase Failure. [Kyle T Stapp]

Fixed LiveSolrContentExtractionTestCase Failure. Reworked core creation and configuration a little. [Kyle T
Stapp]

Reworked start-solr-test-server to work with modern solr. Reworked solr spinup to create a default core using
predefined config in server/confdir. [Kyle T Stapp]

Update solr template to be solr6 compatible. [Kyle T Stapp]

Fix to tests to run with context dicts instead of context objects for django 1.10. [Kyle T Stapp]
Fix django template context passing. [Kyle T Stapp]

Merge pull request #1500 from rafaelhdr/master. [Chris Adams]

Updated tutorial URL configuration example

Updated README for CKEditor URL include. [Rafael]

Management command update_index: Use last seen max pk for selecting batch starting point. [Martin J.
Laubach]

This fixes (or at least mitigates) issue #1077 for the synchronous update case.

1.11.5 v2.6.1 (2017-05-15)

PEP-8. [Chris Adams]
Update SearchBackend.update signature to match implementations. [Chris Adams]

Every actual SearchBackend implementation had this but the base class did not and that could cause confusion
for external projects - e.g.

https://github.com/notanumber/xapian-haystack/commit/d3f1e011da3d9bebd88c78fe7a87cd6171ae650c

. Changelog 43

https://github.com/notanumber/xapian-haystack/commit/d3f1e011da3d9bebd88c78fe7a87cd6171ae650c

Haystack Documentation, Release 2.5.0

» Update SearchIndex get_backend API (closes #663) [Chris Adams]
Make _get_backend a proper public method since it’s recommended by at least one part of the documentation.
» Extract_file_contents will pass extra keyword arguments to pysolr (#1505) [Chris Adams]
Thanks to @guglielmo for the patch
» Extract_file_contents accept extra arguments. [Guglielmo Celata]
so that it may be used to extract content in textual format, instead of using XML, for example
* PEP-8 line-lengths and whitespace. [Chris Adams]
* Better handling of empty lists in field preparation. [Chris Adams]
Merge pull request #1369 from janwin/fix-empty-list-convert
* Cherrypick Terr/django- haystack/commit/45293catbedOef6aeb145ce55573eb32b1e4981f. [janpleines]
e Make empty lists return null or default. [janpleines]
* Merge pull request #1483 from barseghyanartur/patch-1. [Chris Adams]
Update tutorial.rst
» Update tutorial.rst. [Artur Barseghyan]
Added elasticsearch 2.x setting example.
» SearchView: always include spelling suggestions. [Josh Goodwin]

Previously a search which returned no results would not have the “suggestion” context variable present. Now it
will be defined but None.

Thanks to Joshua Goodwin (@jclgoodwin) for the patch.
Closes #644

» Update changelog. [Chris Adams]

* Merge pull request #1469 from stephenpaulger/patch-1. [Chris Adams]
Add 2.6.X docs link to README.

* Add 2.6.X docs link to README. [Stephen Paulger]

1.11.6 v2.6.0 (2017-01-04)

¢ Update changelog. [Chris Adams]

* Merge #1460: backend support for Elasticsearch 2.x. [Chris Adams]
Thanks to Jodo Junior (@joaojunior) and Bruno Marques (@ElSaico) for the patch
Closes #1460 Closes #1391 Closes #1336 Closes #1247

* Docs: update Elasticsearch support status. [Chris Adams]

¢ Tests: avoid unrelated failures when elasticsearch is not installed. [Chris Adams]

This avoids spurious failures in tests for other search engines when the elasticsearch client library is not installed
at all but the ES backend is still declared in the settings.

¢ Tests: friendlier log message for ES version checks. [Chris Adams]

This avoids a potentially scary-looking ImportError flying by in the test output for what’s expected in normal
usage.

44 Chapter 1. Getting Started

Haystack Documentation, Release 2.5.0

* Tests: update ES version detection in settings. [Chris Adams]

This allows the tests to work when run locally or otherwise outside of our Travis / Tox scripts by obtaining the
version from the installed elasticsearch client library.

* Tests: update ES1 client version check message. [Chris Adams]

The name of the Python module changed over time and this now matches the ES2 codebase behaviour of having
the error message give you the exact package to install including the version.

» Update travis script with ES documentation. [Chris Adams]
Add a comment for anyone wondering why this isn’t a simple add-apt-repository call
* Fixed More Like This test with deferred query on Elasticsearch 2.x. [Bruno Marques]
* Fixed expected query behaviour on ES2.x test. [Bruno Marques]
* Install elasticsearch2.0 via apt. [joaojunior]
* Install elasticsearch2.0 via apt. [joaojunior]
* Remove typo. [joaojunior]
* Remove services elasticsearch. [joaojunior]
¢ Fix typo. [joaojunior]
* Sudo=true in .travis.yml to install elasticsearch from apt-get. [joaojunior]
* Fix .travis. [joaojunior]
* Add logging in __init__ tests elasticsearch. [joaojunior]
* Get changes from Master to resolve conflicts. [joaojunior]
¢ Install elasticsearch1.7 via apt. [joaojunior]
» Update Files to run tests in Elasticsearch2.x. [joaojunior]
* Refactoring the code in pull request #1336 . This pull request is to permit use ElasticSearch 2.X. [joaojunior]
* Improved custom object identifier test. [Chris Adams]

This provides an example for implementors and ensures that failing to use the custom class would cause a test
failure.

* Update management backend documentation for —using [flinkflonk]
Thanks to @flinkflonk for the patch!
Closes #1215
* Fix filtered “more like this” queries (#1459) [David Cook]
Now the Solr backend correctly handles a more_like_this() query which is subsequently filter()-ed.
Thanks to @divergentdave for the patch and tests!
* ReStructuredText link format fixes. (#1458) [John Heasly]
¢ Add note to Backend Support docs about lack of ES 5.X support. (#1457) [John Heasly]
» Replace deprecated Point.get_coords() calls. [Chris Adams]
This works as far back as Django 1.8, which is the earliest which we support.
See #1454

 Use setuptools_scm to manage package version numbers. [Chris Adams]

1.11. Changelog 45

Haystack Documentation, Release 2.5.0

1.11.7 v2.5.1 (2016-10-28)

New

Support for Django 1.10. [Chris Adams]
Thanks to Morgan Aubert (@ellmetha) for the patch
Closes #1434 Closes #1437 Closes #1445

Fix

* Contains filter, add endswith filter. [Antony]

— __contains now works in a more intuitive manner (the previous behaviour remains the default for = short-

cut queries and can be requested explicitly with __content)

— __endswith is now supported as the logical counterpart to __startswith
Thanks to @antonyr for the patch and @sebslomski for code review and testing.

Other

e V2.5.1. [Chris Adams]

* Add support for Django 1.10 (refs: #1437, #1434) [Morgan Aubert]

* Docs: fix Sphinx hierarchy issue. [Chris Adams]

* Fix multiprocessing regression in update_index. [Chris Adams]
4ele2elcSdfled1c5432b9d26fcb9dclabab71f4 introduced a bug because it used a property name which exists
on haystack.ConnectionHandler but not the Django ConnectionHandler class it’s modeled on. Long-term, we
should rename the Haystack class to something like SearchConnectionHandler to avoid future confusion.
Closes #1449

* Doc: cleanup searchindex_api.rst. [Jack Norman]

Thanks to Jack Norman (@jwnorman) for the patch
e Merge pull request #1444 from jeremycline/master. [Chris Adams]
Upgrade setuptools in Travis so urllib3-1.18 installs

» Upgrade setuptools in Travis so urllib3-1.18 installs. [Jeremy Cline]

The version of setuptools in Travis is too old to handle <= as an environment marker.

* Tests: accept Solr/ES config from environment. [Chris Adams]

This makes it easy to override these values for e.g. running test instances using Docker images with something
like this:

TEST_ELASTICSEARCH_1_URL="http://$ (docker port elasticsearch-1.7
9200/tcp) /" TEST_SOLR_URL="http://$ (docker port solr-6 8983/tcp)/solr/"
test_haystack/run_tests.py °
See #1408

¢ Merge pull request #1418 from Alkalit/master. [Steve Byerly]

Added link for 2.5.x version docs
46 Chapter 1. Getting Started

Haystack Documentation, Release 2.5.0

* Added link for 2.5.x version. [Alexey Kalinin]

* Merge pull request #1432 from farooqaaa/master. [Steve Byerly]
Added missing —batch-size argument for rebuild_index management command.

¢ Added missing —batch-size argument. [Farooq Azam]

* Merge pull request #1036 from merwok/patch-1. [Steve Byerly]
Documentation update

« Use ellipsis instead of pass. [Eric Araujo]

» Fix code to enable highlighting. [Eric Araujo]

* Merge pull request #1392 from browniebroke/bugfix/doc-error. [Steve Byerly]
Fix Sphinx errors in the changelog

* Fix Sphinx errors in the changelog. [Bruno Alla]

* Merge pull request #1341 from tymofij/solr-hl-options. [Steve Byerly]

* Merge master > tymofij/solr-hl-options. [Steve Byerly]

* Make solr backend accept both shortened and full-form highlighting options. [Tim Babych]

* Autoprefix ‘hl.” for solr options. [Tim Babych]

» Update gitignore to not track test artifacts. [Steve Byerly]

* Merge pull request #1413 from tymofij/patch-2. [Steve Byerly]
typo: suite -> suit

* Typo: suite -> suit. [Tim Babych]

* Merge pull request #1412 from SteveByerly/highlight_sqs_docs. [Steve Byerly]
improve sqs highlight docs - illustrate custom parameters

 Improve highlight docs for custom options. [Steve Byerl