

 Navigation

 	
 index

 	
 next |

 	Haystack 1.2.7 documentation

Table Of Contents

	Welcome to Haystack!
	Getting Started

	Advanced Uses

	Reference

	Developing

	Requirements

	Getting Started with Haystack
	Configuration

	Handling Data

	Setting Up The Views

	Complete!

	What’s Next?

	Glossary

	Views & Forms
	Forms

	Views

	Template Tags
	highlight

	more_like_this

	Management Commands
	clear_index

	update_index

	rebuild_index

	build_solr_schema

	haystack_info

	Architecture Overview
	SearchQuerySet

	SearchQuery

	SearchBackend

	SearchSite

	SearchIndex

	Backend Support
	Supported Backends

	Backend Capabilities

	Wishlist

	Installing Search Engines
	Solr

	Whoosh

	Xapian

	Haystack Settings
	HAYSTACK_DEFAULT_OPERATOR

	HAYSTACK_SITECONF

	HAYSTACK_SEARCH_ENGINE

	HAYSTACK_SEARCH_RESULTS_PER_PAGE

	HAYSTACK_INCLUDE_SPELLING

	HAYSTACK_SOLR_URL

	HAYSTACK_SOLR_TIMEOUT

	HAYSTACK_WHOOSH_PATH

	HAYSTACK_WHOOSH_STORAGE

	HAYSTACK_WHOOSH_POST_LIMIT

	HAYSTACK_XAPIAN_PATH

	HAYSTACK_BATCH_SIZE

	HAYSTACK_CUSTOM_HIGHLIGHTER

	HAYSTACK_ENABLE_REGISTRATIONS

	HAYSTACK_ITERATOR_LOAD_PER_QUERY

	HAYSTACK_LIMIT_TO_REGISTERED_MODELS

	HAYSTACK_SILENTLY_FAIL

	HAYSTACK_ID_FIELD

	HAYSTACK_DJANGO_CT_FIELD

	HAYSTACK_DJANGO_ID_FIELD

	(In)Frequently Asked Questions
	What is Haystack?

	Why should I consider using Haystack?

	When should I not be using Haystack?

	Why was Haystack created when there are so many other search options?

	What’s the history behind Haystack?

	Why doesn’t <search engine X> have a backend included in Haystack?

	Sites Using Haystack
	LJWorld/Lawrence.com/KUSports

	AltWeeklies

	Trapeze

	Eldarion

	Sunlight Labs

	NASA

	AllForLocal

	HUGE

	Brick Design

	Winding Road

	Reddit

	Pegasus News

	Rampframe

	Forkinit

	Structured Abstraction

	CustomMade

	University of the Andes, Dept. of Political Science

	Christchurch Art Gallery

	DevCheatSheet.com

	TodasLasRecetas

	Haystack-Related Applications
	Sub Apps

	Haystack-Enabled Apps

	Debugging Haystack
	“No module named haystack.”

	“No results found.” (On the web page)

	“LockError: [Errno 17] File exists: ‘/path/to/whoosh_index/_MAIN_LOCK’”

	“Import errors on start-up mentioning ‘handle_registrations’”

	“Failed to add documents to Solr: [Reason: None]”

	“Got an unexpected keyword argument ‘boost’”

	Best Practices
	Good Search Needs Good Content

	Avoid Hitting The Database

	Content-Type Specific Templates

	Real-Time Search

	Use Of A Queue For A Better User Experience

	Highlighting
	Highlighter

	Faceting
	What Is Faceting?

	1. Determine Facets And SearchQuerySet

	2. Switch to the FacetedSearchView and FacetedSearchForm

	3. Display The Facets In The Template

	4. Narrowing The Search

	Autocomplete
	Step 1. Setup The Data

	Step 2. Performing The Query

	Boost
	Term Boost

	Document Boost

	Field Boost

	Advanced Topics
	Swapping Backends

	SearchQuerySet API
	Why Follow QuerySet?

	Quick Start

	SearchQuerySet

	The content Shortcut

	SearchQuerySet Methods

	EmptySearchQuerySet

	RelatedSearchQuerySet

	SearchIndex API
	Quick Start

	Background

	Keeping The Index Fresh

	Advanced Data Preparation

	Adding New Fields

	Search Index

	RealTimeSearchIndex

	ModelSearchIndex

	SearchField API
	Subclasses

	Usage

	Field Options

	Method Reference

	SearchResult API
	Attribute Reference

	Method Reference

	SearchSite API
	Autodiscovery

	Usage

	Method Reference

	SearchQuery API
	SQ Objects

	Backend-Specific Methods

	Inheritable Methods

	SearchBackend API
	Method Reference

	Running Tests
	Core Haystack Functionality

	Backends

	Creating New Backends
	SearchBackend

	SearchQuery

	Utilities
	get_identifier

Indices and tables

	Search Page

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Welcome to Haystack!

Haystack provides modular search for Django. It features a unified, familiar
API that allows you to plug in different search backends (such as Solr [http://lucene.apache.org/solr/],
Whoosh [http://whoosh.ca/], Xapian [http://xapian.org/], etc.) without having to modify your code.

Note

This documentation represents the development version of Haystack. For
old versions of the documentation: 1.0 [http://docs.haystacksearch.org/1.0/], 1.1 [http://docs.haystacksearch.org/1.1/].

Getting Started

If you’re new to Haystack, you may want to start with these documents to get
you up and running:

	Getting Started with Haystack
	Configuration

	Handling Data

	Setting Up The Views

	Complete!

	What’s Next?

	Views & Forms

	Template Tags

	Glossary

	Management Commands

	(In)Frequently Asked Questions

	Sites Using Haystack

	Haystack-Related Applications

	Installing Search Engines

	Debugging Haystack

Advanced Uses

Once you’ve got Haystack working, here are some of the more complex features
you may want to include in your application.

	Best Practices

	Highlighting

	Faceting

	Autocomplete

	Boost

	Advanced Topics

Reference

If you’re an experienced user and are looking for a reference, you may be
looking for API documentation and advanced usage as detailed in:

	SearchQuerySet API
	Why Follow QuerySet?

	Quick Start

	SearchQuerySet

	The content Shortcut

	SearchQuerySet Methods

	EmptySearchQuerySet

	RelatedSearchQuerySet

	SearchIndex API
	Quick Start

	Background

	Keeping The Index Fresh

	Advanced Data Preparation

	Adding New Fields

	Search Index

	RealTimeSearchIndex

	ModelSearchIndex

	SearchField API
	Subclasses

	Usage

	Field Options

	Method Reference

	SearchResult API
	Attribute Reference

	Method Reference

	SearchSite API
	Autodiscovery

	Usage

	Method Reference

	SearchQuery API
	SQ Objects

	Backend-Specific Methods

	Inheritable Methods

	SearchBackend API
	Method Reference

	Architecture Overview
	SearchQuerySet

	SearchQuery

	SearchBackend

	SearchSite

	SearchIndex

	Backend Support
	Supported Backends

	Backend Capabilities

	Wishlist

	Haystack Settings
	HAYSTACK_DEFAULT_OPERATOR

	HAYSTACK_SITECONF

	HAYSTACK_SEARCH_ENGINE

	HAYSTACK_SEARCH_RESULTS_PER_PAGE

	HAYSTACK_INCLUDE_SPELLING

	HAYSTACK_SOLR_URL

	HAYSTACK_SOLR_TIMEOUT

	HAYSTACK_WHOOSH_PATH

	HAYSTACK_WHOOSH_STORAGE

	HAYSTACK_WHOOSH_POST_LIMIT

	HAYSTACK_XAPIAN_PATH

	HAYSTACK_BATCH_SIZE

	HAYSTACK_CUSTOM_HIGHLIGHTER

	HAYSTACK_ENABLE_REGISTRATIONS

	HAYSTACK_ITERATOR_LOAD_PER_QUERY

	HAYSTACK_LIMIT_TO_REGISTERED_MODELS

	HAYSTACK_SILENTLY_FAIL

	HAYSTACK_ID_FIELD

	HAYSTACK_DJANGO_CT_FIELD

	HAYSTACK_DJANGO_ID_FIELD

	Utilities
	get_identifier

Developing

Finally, if you’re looking to help out with the development of Haystack,
the following links should help guide you on running tests and creating
additional backends:

	Running Tests

	Creating New Backends

Requirements

Haystack has a relatively easily-met set of requirements.

	Python 2.4+ (may work on 2.3 but untested)

	Django 1.0+

Additionally, each backend has its own requirements. You should refer to
Installing Search Engines for more details.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Getting Started with Haystack

Search is a topic of ever increasing importance. Users increasing rely on search
to separate signal from noise and find what they’re looking for quickly. In
addition, search can provide insight into what things are popular (many
searches), what things are difficult to find on the site and ways you can
improve the site better.

To this end, Haystack tries to make integrating custom search as easy as
possible while being flexible/powerful enough to handle more advanced use cases.

Haystack is a reusable app (that is, it relies only on it’s own code and focuses
on providing just search) that plays nicely with both apps you control as well as
third-party apps (such as django.contrib.*) without having to modify the
sources.

Haystack also does pluggable backends (much like Django’s database
layer), so virtually all of the code you write ought to be portable between
which ever search engine you choose.

Note

If you hit a stumbling block, there is both a mailing list [http://groups.google.com/group/django-haystack] and
#haystack on irc.freenode.net to get help.

This tutorial assumes that you have a basic familiarity with the various major
parts of Django (models/forms/views/settings/URLconfs) and tailored to the
typical use case. There are shortcuts available as well as hooks for much
more advanced setups, but those will not be covered here.

For example purposes, we’ll be adding search functionality to a simple
note-taking application. Here is myapp/models.py:

from django.db import models
from django.contrib.auth.models import User

class Note(models.Model):
 user = models.ForeignKey(User)
 pub_date = models.DateTimeField()
 title = models.CharField(max_length=200)
 body = models.TextField()

 def __unicode__(self):
 return self.title

Finally, before starting with Haystack, you will want to choose a search
backend to get started. There is a quick-start guide to
Installing Search Engines, though you may want to defer to each engine’s
official instructions.

Configuration

Add Haystack To INSTALLED_APPS

As with most Django applications, you should add Haystack to the
INSTALLED_APPS within your settings file (usually settings.py).

Example:

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',

 # Added.
 'haystack',

 # Then your usual apps...
 'blog',
]

Modify Your settings.py

Within your settings.py, you’ll need to add a setting to indicate where your
site configuration file will live and which backend to use, as well as other
settings for that backend.

HAYSTACK_SITECONF is a required settings and should provide a Python import
path to a file where you keep your SearchSite configurations in. This will
be explained in the next step, but for now, add the following settings
(substituting your correct information) and create an empty file at that path:

HAYSTACK_SITECONF = 'myproject.search_sites'

HAYSTACK_SEARCH_ENGINE is a required setting and should be one of the
following:

	solr

	whoosh

	xapian (if you installed xapian-haystack)

	simple

	dummy

Example:

HAYSTACK_SEARCH_ENGINE = 'whoosh'

Additionally, backends may require additional information.

Solr

Requires setting HAYSTACK_SOLR_URL to be the URL where your Solr is running at.

Example:

HAYSTACK_SOLR_URL = 'http://127.0.0.1:8983/solr'
...or for multicore...
HAYSTACK_SOLR_URL = 'http://127.0.0.1:8983/solr/mysite'

Whoosh

Requires setting HAYSTACK_WHOOSH_PATH to the place on your filesystem where the
Whoosh index should be located. Standard warnings about permissions and keeping
it out of a place your webserver may serve documents out of apply.

Example:

HAYSTACK_WHOOSH_PATH = '/home/whoosh/mysite_index'

Xapian

First, install the Xapian backend (via
http://github.com/notanumber/xapian-haystack/tree/master) per the instructions
included with the backend.

Requires setting HAYSTACK_XAPIAN_PATH to the place on your filesystem where the
Xapian index should be located. Standard warnings about permissions and keeping
it out of a place your webserver may serve documents out of apply.

Example:

HAYSTACK_XAPIAN_PATH = '/home/xapian/mysite_index'

Simple

The simple backend using very basic matching via the database itself. It’s
not recommended for production use but is more useful than the dummy backend
in that it will return results. No extra settings are needed.

Create A SearchSite

Within the empty file you created corresponding to your HAYSTACK_SITECONF,
add the following code:

import haystack
haystack.autodiscover()

This will create a default SearchSite instance, search through all of your
INSTALLED_APPS for search_indexes.py and register all SearchIndex
classes with the default SearchSite.

Note

You can configure more than one SearchSite as well as manually
registering/unregistering indexes with them. However, these are rarely done
in practice and are available for advanced use.

Handling Data

Creating SearchIndexes

SearchIndex objects are the way Haystack determines what data should be
placed in the search index and handles the flow of data in. You can think of
them as being similar to Django Models or Forms in that they are
field-based and manipulate/store data.

You generally create a unique SearchIndex for each type of Model you
wish to index, though you can reuse the same SearchIndex between different
models if you take care in doing so and your field names are very standardized.

To use a SearchIndex, you need to register it with the Model it applies
to and the SearchSite it ought to belong to. Registering indexes in Haystack
is very similar to the way you register models and ModelAdmin classes with
the Django admin site [http://docs.djangoproject.com/en/dev/ref/contrib/admin/].

To build a SearchIndex, all that’s necessary is to subclass SearchIndex,
define the fields you want to store data with and register it.

We’ll create the following NoteIndex to correspond to our Note
model. This code generally goes in a search_indexes.py file within the app
it applies to, though that is not required. This allows
haystack.autodiscover() to automatically pick it up. The
NoteIndex should look like:

import datetime
from haystack.indexes import *
from haystack import site
from myapp.models import Note

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')

 def index_queryset(self):
 """Used when the entire index for model is updated."""
 return Note.objects.filter(pub_date__lte=datetime.datetime.now())

site.register(Note, NoteIndex)

Every SearchIndex requires there be one (and only one) field with
document=True. This indicates to both Haystack and the search engine about
which field is the primary field for searching within.

Warning

When you choose a document=True field, it should be consistently named
across all of your SearchIndex classes to avoid confusing the backend.
The convention is to name this field text.

There is nothing special about the text field name used in all of the
examples. It could be anything; you could call it pink_polka_dot and
it won’t matter. It’s simply a convention to call it text.

Additionally, we’re providing use_template=True on the text field. This
allows us to use a data template (rather than error prone concatenation) to
build the document the search engine will use in searching. You’ll need to
create a new template inside your template directory called
search/indexes/myapp/note_text.txt and place the following inside:

{{ object.title }}
{{ object.user.get_full_name }}
{{ object.body }}

In addition, we added several other fields (author and pub_date). These
are useful when you want to provide additional filtering options. Haystack comes
with a variety of SearchField classes to handle most types of data.

A common theme is to allow admin users to add future content but have it not
display on the site until that future date is reached. We specify a custom
index_queryset method to prevent those future items from being indexed.

Setting Up The Views

Add The SearchView To Your URLconf

Within your URLconf, add the following line:

(r'^search/', include('haystack.urls')),

This will pull in the default URLconf for Haystack. It consists of a single
URLconf that points to a SearchView instance. You can change this class’s
behavior by passing it any of several keyword arguments or override it entirely
with your own view.

Search Template

Your search template (search/search.html for the default case) will likely
be very simple. The following is enough to get going (your template/block names
will likely differ):

{% extends 'base.html' %}

{% block content %}
 <h2>Search</h2>

 <form method="get" action=".">
 <table>
 {{ form.as_table }}
 <tr>
 <td> </td>
 <td>
 <input type="submit" value="Search">
 </td>
 </tr>
 </table>

 {% if query %}
 <h3>Results</h3>

 {% for result in page.object_list %}
 <p>
 {{ result.object.title }}
 </p>
 {% empty %}
 <p>No results found.</p>
 {% endfor %}

 {% if page.has_previous or page.has_next %}
 <div>
 {% if page.has_previous %}{% endif %}« Previous{% if page.has_previous %}{% endif %}
 |
 {% if page.has_next %}{% endif %}Next »{% if page.has_next %}{% endif %}
 </div>
 {% endif %}
 {% else %}
 {# Show some example queries to run, maybe query syntax, something else? #}
 {% endif %}
 </form>
{% endblock %}

Note that the page.object_list is actually a list of SearchResult
objects instead of individual models. These objects have all the data returned
from that record within the search index as well as score. They can also
directly access the model for the result via {{ result.object }}. So the
{{ result.object.title }} uses the actual Note object in the database
and accesses its title field.

Reindex

The final step, now that you have everything setup, is to put your data in
from your database into the search index. Haystack ships with a management
command to make this process easy.

Note

If you’re using the Solr backend, you have an extra step. Solr’s
configuration is XML-based, so you’ll need to manually regenerate the
schema. You should run
./manage.py build_solr_schema first, drop the XML output in your
Solr’s schema.xml file and restart your Solr server.

Simply run ./manage.py rebuild_index. You’ll get some totals of how many
models were processed and placed in the index.

Note

Using the standard SearchIndex, your search index content is only
updated whenever you run either ./manage.py update_index or start
afresh with ./manage.py rebuild_index.

You should cron up a ./manage.py update_index job at whatever interval
works best for your site (using --age=<num_hours> reduces the number of
things to update).

Alternatively, if you have low traffic and/or your search engine can handle
it, the RealTimeSearchIndex automatically handles updates/deletes
for you.

Complete!

You can now visit the search section of your site, enter a search query and
receive search results back for the query! Congratulations!

What’s Next?

This tutorial just scratches the surface of what Haystack provides. The
SearchQuerySet is the underpinning of all search in Haystack and provides
a powerful, QuerySet-like API (see SearchQuerySet API). You can
use much more complicated SearchForms/SearchViews to give users a better
UI (see Views & Forms). And the Best Practices provides
insight into non-obvious or advanced usages of Haystack.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Views & Forms

Haystack comes with some default, simple views & forms to help you get started
and to cover the common cases. Included is a way to provide:

	Basic, query-only search.

	Search by models.

	Search with basic highlighted results.

	Faceted search.

	Search by models with basic highlighted results.

Most processing is done by the forms provided by Haystack via the search
method. As a result, all but the faceted types (see Faceting) use the
standard SearchView.

There is very little coupling between the forms & the views (other than relying
on the existence of a search method on the form), so you may interchangeably
use forms and/or views anywhere within your own code.

Forms

SearchForm

The most basic of the form types, this form consists of a single field, the
q field (for query). Upon searching, the form will take the cleaned contents
of the q field and perform an auto_query on either the custom
SearchQuerySet you provide or off a default SearchQuerySet.

To customize the SearchQuerySet the form will use, pass it a
searchqueryset parameter to the constructor with the SearchQuerySet
you’d like to use. If using this form in conjunction with a SearchView,
the form will receive whatever SearchQuerySet you provide to the view with
no additional work needed.

The SearchForm also accepts a load_all parameter (True or
False), which determines how the database is queried when iterating through
the results. This also is received automatically from the SearchView.

All other forms in Haystack inherit (either directly or indirectly) from this
form.

HighlightedSearchForm

Identical to the SearchForm except that it tags the highlight method on
to the end of the SearchQuerySet to enable highlighted results.

ModelSearchForm

This form adds new fields to form. It iterates through all registered models for
the current SearchSite and provides a checkbox for each one. If no models
are selected, all types will show up in the results.

HighlightedModelSearchForm

Identical to the ModelSearchForm except that it tags the highlight
method on to the end of the SearchQuerySet to enable highlighted results on
the selected models.

FacetedSearchForm

Identical to the SearchForm except that it adds a hidden selected_facets
field onto the form, allowing the form to narrow the results based on the facets
chosen by the user.

Creating Your Own Form

The simplest way to go about creating your own form is to inherit from
SearchForm (or the desired parent) and extend the search method. By
doing this, you save yourself most of the work of handling data correctly and
stay API compatible with the SearchView.

For example, let’s say you’re providing search with a user-selectable date range
associated with it. You might create a form that looked as follows:

from django import forms
from haystack.forms import SearchForm

class DateRangeSearchForm(SearchForm):
 start_date = forms.DateField(required=False)
 end_date = forms.DateField(required=False)

 def search(self):
 # First, store the SearchQuerySet received from other processing.
 sqs = super(DateRangeSearchForm, self).search()

 # Check to see if a start_date was chosen.
 if self.cleaned_data['start_date']:
 sqs = sqs.filter(pub_date__gte=self.cleaned_data['start_date'])

 # Check to see if an end_date was chosen.
 if self.cleaned_data['end_date']:
 sqs = sqs.filter(pub_date__lte=self.cleaned_data['end_date'])

 return sqs

This form adds two new fields for (optionally) choosing the start and end dates.
Within the search method, we grab the results from the parent form’s
processing. Then, if a user has selected a start and/or end date, we apply that
filtering. Finally, we simply return the SearchQuerySet.

Views

Haystack comes bundled with three views, the class-based views (SearchView &
FacetedSearchView) and a traditional functional view (basic_search).

The class-based views provide for easy extension should you need to alter the
way a view works. Except in the case of faceting (again, see Faceting),
the SearchView works interchangeably with all other forms provided by
Haystack.

The functional view provides an example of how Haystack can be used in more
traditional settings or as an example of how to write a more complex custom
view. It is also thread-safe.

SearchView(template=None, load_all=True, form_class=None, searchqueryset=None, context_class=RequestContext, results_per_page=None)

The SearchView is designed to be easy/flexible enough to override common
changes as well as being internally abstracted so that only altering a specific
portion of the code should be easy to do.

Without touching any of the internals of the SearchView, you can modify
which template is used, which form class should be instantiated to search with,
what SearchQuerySet to use in the event you wish to pre-filter the results.
what Context-style object to use in the response and the load_all
performance optimization to reduce hits on the database. These options can (and
generally should) be overridden at the URLconf level. For example, to have a
custom search limited to the ‘John’ author, displaying all models to search by
and specifying a custom template (my/special/path/john_search.html), your
URLconf should look something like:

from django.conf.urls.defaults import *
from haystack.forms import ModelSearchForm
from haystack.query import SearchQuerySet
from haystack.views import SearchView

sqs = SearchQuerySet().filter(author='john')

Without threading...
urlpatterns = patterns('haystack.views',
 url(r'^$', SearchView(
 template='my/special/path/john_search.html',
 searchqueryset=sqs,
 form_class=SearchForm
), name='haystack_search'),
)

With threading...
from haystack.views import SearchView, search_view_factory

urlpatterns = patterns('haystack.views',
 url(r'^$', search_view_factory(
 view_class=SearchView,
 template='my/special/path/john_search.html',
 searchqueryset=sqs,
 form_class=ModelSearchForm
), name='haystack_search'),
)

Warning

The standard SearchView is not thread-safe. Use the
search_view_factory function, which returns thread-safe instances of
SearchView.

By default, if you don’t specify a form_class, the view will use the
haystack.forms.ModelSearchForm form.

Beyond this customizations, you can create your own SearchView and
extend/override the following methods to change the functionality.

__call__(self, request)

Generates the actual response to the search.

Relies on internal, overridable methods to construct the response. You generally
should avoid altering this method unless you need to change the flow of the
methods or to add a new method into the processing.

build_form(self, form_kwargs=None)

Instantiates the form the class should use to process the search query.

Optionally accepts a dictionary of parameters that are passed on to the
form’s __init__. You can use this to lightly customize the form.

You should override this if you write a custom form that needs special
parameters for instantiation.

get_query(self)

Returns the query provided by the user.

Returns an empty string if the query is invalid. This pulls the cleaned query
from the form, via the q field, for use elsewhere within the SearchView.
This is used to populate the query context variable.

get_results(self)

Fetches the results via the form.

Returns an empty list if there’s no query to search with. This method relies on
the form to do the heavy lifting as much as possible.

build_page(self)

Paginates the results appropriately.

In case someone does not want to use Django’s built-in pagination, it
should be a simple matter to override this method to do what they would
like.

extra_context(self)

Allows the addition of more context variables as needed. Must return a
dictionary whose contents will add to or overwrite the other variables in the
context.

create_response(self)

Generates the actual HttpResponse to send back to the user. It builds the page,
creates the context and renders the response for all the aforementioned
processing.

basic_search(request, template='search/search.html', load_all=True, form_class=ModelSearchForm, searchqueryset=None, context_class=RequestContext, extra_context=None, results_per_page=None)

The basic_search tries to provide most of the same functionality as the
class-based views but resembles a more traditional generic view. It’s both a
working view if you prefer not to use the class-based views as well as a good
starting point for writing highly custom views.

Since it is all one function, the only means of extension are passing in
kwargs, similar to the way generic views work.

Creating Your Own View

As with the forms, inheritance is likely your best bet. In this case, the
FacetedSearchView is a perfect example of how to extend the existing
SearchView. The complete code for the FacetedSearchView looks like:

class FacetedSearchView(SearchView):
 def __name__(self):
 return "FacetedSearchView"

 def extra_context(self):
 extra = super(FacetedSearchView, self).extra_context()

 if self.results == []:
 extra['facets'] = self.form.search().facet_counts()
 else:
 extra['facets'] = self.results.facet_counts()

 return extra

It updates the name of the class (generally for documentation purposes) and
adds the facets from the SearchQuerySet to the context as the facets
variable. As with the custom form example above, it relies on the parent class
to handle most of the processing and extends that only where needed.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Template Tags

Haystack comes with a couple common template tags to make using some of its
special features available to templates.

highlight

Takes a block of text and highlights words from a provided query within that
block of text. Optionally accepts arguments to provide the HTML tag to wrap
highlighted word in, a CSS class to use with the tag and a maximum length of
the blurb in characters.

The defaults are span for the HTML tag, highlighted for the CSS class
and 200 characters for the excerpt.

Syntax:

{% highlight <text_block> with <query> [css_class "class_name"] [html_tag "span"] [max_length 200] %}

Example:

Highlight summary with default behavior.
{% highlight result.summary with request.query %}

Highlight summary but wrap highlighted words with a div and the
following CSS class.
{% highlight result.summary with request.query html_tag "div" class "highlight_me_please" %}

Highlight summary but only show 40 words.
{% highlight result.summary with request.query max_length 40 %}

The highlighter used by this tag can be overridden as needed. See the
Highlighting documentation for more information.

more_like_this

Fetches similar items from the search index to find content that is similar
to the provided model’s content.

Note

This requires a backend that has More Like This built-in.

Syntax:

{% more_like_this model_instance as varname [for app_label.model_name,app_label.model_name,...] [limit n] %}

Example:

Pull a full SearchQuerySet (lazy loaded) of similar content.
{% more_like_this entry as related_content %}

Pull just the top 5 similar pieces of content.
{% more_like_this entry as related_content limit 5 %}

Pull just the top 5 similar entries or comments.
{% more_like_this entry as related_content for "blog.entry,comments.comment" limit 5 %}

This tag behaves exactly like SearchQuerySet.more_like_this`, so all notes in
that regard apply here as well.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Glossary

Search is a domain full of it’s own jargon and definitions. As this may be an
unfamiliar territory to many developers, what follows are some commonly used
terms and what they mean.

	Engine

	An engine, for the purposes of Haystack, is a third-party search solution.
It might be a full service (i.e. Solr [http://lucene.apache.org/solr/]) or a library to build an
engine with (i.e. Whoosh [http://whoosh.ca/])

	Index

	The datastore used by the engine is called an index. Its structure can vary
wildly between engines but commonly they resemble a document store. This is
the source of all information in Haystack.

	Document

	A document is essentially a record within the index. It usually contains at
least one blob of text that serves as the primary content the engine searches
and may have additional data hung off it.

	Corpus

	A term for a collection of documents. When talking about the documents stored
by the engine (rather than the technical implementation of the storage), this
term is commonly used.

	Field

	Within the index, each document may store extra data with the main content as
a field. Also sometimes called an attribute, this usually represents metadata
or extra content about the document. Haystack can use these fields for
filtering and display.

	Term

	A term is generally a single word (or word-like) string of characters used
in a search query.

	Stemming

	A means of determining if a word has any root words. This varies by language,
but in English, this generally consists of removing plurals, an action form of
the word, et cetera. For instance, in English, ‘giraffes’ would stem to
‘giraffe’. Similarly, ‘exclamation’ would stem to ‘exclaim’. This is useful
for finding variants of the word that may appear in other documents.

	Boost

	Boost provides a means to take a term or phrase from a search query and alter
the relevance of a result based on if that term is found in the result, a form
of weighting. For instance, if you wanted to more heavily weight results that
included the word ‘zebra’, you’d specify a boost for that term within the
query.

	More Like This

	Incorporating techniques from information retrieval and artificial
intelligence, More Like This is a technique for finding other documents within
the index that closely resemble the document in question. This is useful for
programmatically generating a list of similar content for a user to browse
based on the current document they are viewing.

	Faceting

	Faceting is a way to provide insight to the user into the contents of your
corpus. In its simplest form, it is a set of document counts returned with
results when performing a query. These counts can be used as feedback for
the user, allowing the user to choose interesting aspects of their search
results and “drill down” into those results.

An example might be providing a facet on an author field, providing back a
list of authors and the number of documents in the index they wrote. This
could be presented to the user with a link, allowing the user to click and
narrow their original search to all results by that author.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Management Commands

Haystack comes with several management commands to make working with Haystack
easier.

clear_index

The clear_index command wipes out your entire search index. Use with
caution. In addition to the standard management command options, it accepts the
following arguments:

``--noinput``:
 If provided, the interactive prompts are skipped and the index is
 uncerimoniously wiped out.
``--verbosity``:
 Accepted but ignored.

By default, this is an INTERACTIVE command and assumes that you do NOT
wish to delete the entire index.

Warning

Depending on the backend you’re using, this may simply delete the entire
directory, so be sure your HAYSTACK_<ENGINE>_PATH setting is correctly
pointed at just the index directory.

update_index

The update_index command will freshen all of the content in your index. It
iterates through all indexed models and updates the records in the index. In
addition to the standard management command options, it accepts the following
arguments:

``--age``:
 Number of hours back to consider objects new. Useful for nightly
 reindexes (``--age=24``). Requires ``SearchIndexes`` to implement
 the ``get_updated_field`` method.
``--batch-size``:
 Number of items to index at once. Default is 1000.
``--site``:
 The site object to use when reindexing (like `search_sites.mysite`).
``--remove``:
 Remove objects from the index that are no longer present in the
 database.
``--workers``:
 Allows for the use multiple workers to parallelize indexing. Requires
 ``multiprocessing``.
``--verbosity``:
 If provided, dumps out more information about what's being done.

 * ``0`` = No output
 * ``1`` = Minimal output describing what models were indexed
 and how many records.
 * ``2`` = Full output, including everything from ``1`` plus output
 on each batch that is indexed, which is useful when debugging.

Note

This command ONLY updates records in the index. It does NOT handle
deletions unless the --remove flag is provided. You might consider
a queue consumer if the memory requirements for --remove don’t
fit your needs. Alternatively, you can use the
RealTimeSearchIndex, which will automatically handle deletions.

rebuild_index

A shortcut for clear_index followed by update_index. It accepts any/all
of the arguments of the following arguments:

``--age``:
 Number of hours back to consider objects new. Useful for nightly
 reindexes (``--age=24``). Requires ``SearchIndexes`` to implement
 the ``get_updated_field`` method.
``--batch-size``:
 Number of items to index at once. Default is 1000.
``--site``:
 The site object to use when reindexing (like `search_sites.mysite`).
``--noinput``:
 If provided, the interactive prompts are skipped and the index is
 uncerimoniously wiped out.
``--remove``:
 Remove objects from the index that are no longer present in the
 database.
``--verbosity``:
 If provided, dumps out more information about what's being done.

 * ``0`` = No output
 * ``1`` = Minimal output describing what models were indexed
 and how many records.
 * ``2`` = Full output, including everything from ``1`` plus output
 on each batch that is indexed, which is useful when debugging.

For when you really, really want a completely rebuilt index.

build_solr_schema

Once all of your SearchIndex classes are in place, this command can be used
to generate the XML schema Solr needs to handle the search data. It accepts no
arguments.

haystack_info

Provides some basic information about how Haystack is setup and what models it
is handling. It accepts no arguments. Useful when debugging or when using
Haystack-enabled third-party apps.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

(In)Frequently Asked Questions

What is Haystack?

Haystack is meant to be a portable interface to a search engine of your choice.
Some might call it a search framework, an abstraction layer or what have you.
The idea is that you write your search code once and should be able to freely
switch between backends as your situation necessitates.

Why should I consider using Haystack?

Haystack is targeted at the following use cases:

	If you want to feature search on your site and search solutions like Google or
Yahoo search don’t fit your needs.

	If you want to be able to customize your search and search on more than just
the main content.

	If you want to have features like drill-down (faceting) or “More Like This”.

	If you want a interface that is non-search engine specific, allowing you to
change your mind later without much rewriting.

When should I not be using Haystack?

	Non-Model-based data. If you just want to index random data (flat files,
alternate sources, etc.), Haystack isn’t a good solution. Haystack is very
Model-based and doesn’t work well outside of that use case.

	Ultra-high volume. Because of the very nature of Haystack (abstraction layer),
there’s more overhead involved. This makes it portable, but as with all
abstraction layers, you lose a little performance. You also can’t take full
advantage of the exact feature-set of your search engine. This is the price
of pluggable backends.

Why was Haystack created when there are so many other search options?

The proliferation of search options in Django is a relatively recent development
and is actually one of the reasons for Haystack’s existence. There are too
many options that are only partial solutions or are too engine specific.

Further, most use an unfamiliar API and documentation is lacking in most cases.

Haystack is an attempt to unify these efforts into one solution. That’s not to
say there should be no alternatives, but Haystack should provide a good
solution to 80%+ of the search use cases out there.

What’s the history behind Haystack?

Haystack started because of my frustration with the lack of good search options
(before many other apps came out) and as the result of extensive use of
Djangosearch. Djangosearch was a decent solution but had a number of
shortcomings, such as:

	Tied to the models.py, so you’d have to modify the source of third-party (
or django.contrib) apps in order to effectively use it.

	All or nothing approach to indexes. So all indexes appear on all sites and
in all places.

	Lack of tests.

	Lack of documentation.

	Uneven backend implementations.

The initial idea was to simply fork Djangosearch and improve on these (and
other issues). However, after stepping back, I decided to overhaul the entire
API (and most of the underlying code) to be more representative of what I would
want as an end-user. The result was starting afresh and reusing concepts (and
some code) from Djangosearch as needed.

As a result of this heritage, you can actually still find some portions of
Djangosearch present in Haystack (especially in the SearchIndex and
SearchBackend classes) where it made sense. The original authors of
Djangosearch are aware of this and thus far have seemed to be fine with this
reuse.

Why doesn’t <search engine X> have a backend included in Haystack?

Several possibilities on this.

	Licensing

A common problem is that the Python bindings for a specific engine may
have been released under an incompatible license. The goal is for Haystack
to remain BSD licensed and importing bindings with an incompatible license
can technically convert the entire codebase to that license. This most
commonly occurs with GPL’ed bindings.

	Lack of time

The search engine in question may be on the list of backends to add and we
simply haven’t gotten to it yet. We welcome patches for additional backends.

	Incompatible API

In order for an engine to work well with Haystack, a certain baseline set of
features is needed. This is often an issue when the engine doesn’t support
ranged queries or additional attributes associated with a search record.

	We’re not aware of the engine

If you think we may not be aware of the engine you’d like, please tell us
about it (preferably via the group -
http://groups.google.com/group/django-haystack/). Be sure to check through
the backends (in case it wasn’t documented) and search the history on the
group to minimize duplicates.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Sites Using Haystack

The following sites are a partial list of people using Haystack. I’m always
interested in adding more sites, so please find me (daniellindsley) via
IRC or the mailing list thread.

LJWorld/Lawrence.com/KUSports

For all things search-related.

Using: Solr

	http://www2.ljworld.com/search/

	http://www2.ljworld.com/search/vertical/news.story/

	http://www2.ljworld.com/marketplace/

	http://www.lawrence.com/search/

	http://www.kusports.com/search/

AltWeeklies

Providing an API to story aggregation.

Using: Whoosh

	http://www.northcoastjournal.com/altweeklies/documentation/

Trapeze

Various projects.

Using: Xapian

	http://www.trapeze.com/

	http://www.windmobile.ca/

	http://www.bonefishgrill.com/

	http://www.canadiantire.ca/ (Portions of)

Eldarion

Various projects.

Using: Solr

	http://eldarion.com/

Sunlight Labs

For general search.

Using: Whoosh & Solr

	http://sunlightlabs.com/

	http://subsidyscope.com/

NASA

For general search.

Using: Solr

	An internal site called SMD Spacebook 1.1.

	http://science.nasa.gov/

AllForLocal

For general search.

	http://www.allforlocal.com/

HUGE

Various projects.

Using: Solr

	http://hugeinc.com/

	http://houselogic.com/

Brick Design

For search on Explore.

Using: Solr

	http://bricksf.com/

	http://explore.org/

Winding Road

For general search.

Using: Solr

	http://www.windingroad.com/

Reddit

For Reddit Gifts.

Using: Whoosh

	http://redditgifts.com/

Pegasus News

For general search.

Using: Xapian

	http://www.pegasusnews.com/

Rampframe

For general search.

Using: Xapian

	http://www.rampframe.com/

Forkinit

For general search, model-specific search and suggestions via MLT.

Using: Solr

	http://forkinit.com/

Structured Abstraction

For general search.

Using: Xapian

	http://www.structuredabstraction.com/

	http://www.delivergood.org/

CustomMade

For general search.

Using: Solr

	http://www.custommade.com/

University of the Andes, Dept. of Political Science

For general search & section-specific search. Developed by Monoku.

Using: Solr

	http://www.congresovisible.org/

	http://www.monoku.com/

Christchurch Art Gallery

For general search & section-specific search.

Using: Solr

	http://christchurchartgallery.org.nz/search/

	http://christchurchartgallery.org.nz/collection/browse/

DevCheatSheet.com

For general search.

Using: Xapian

	http://devcheatsheet.com/

TodasLasRecetas

For search, faceting & More Like This.

Using: Solr

	http://www.todaslasrecetas.es/receta/s/?q=langostinos

	http://www.todaslasrecetas.es/receta/9526/brochetas-de-langostinos

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Haystack-Related Applications

Sub Apps

These are apps that build on top of the infrastructure provided by Haystack.
Useful for essentially extending what Haystack can do.

queued_search

http://github.com/toastdriven/queued_search

Provides a queue-based setup as an alternative to RealTimeSearchIndex or
constantly running the update_index command. Useful for high-load, short
update time situations.

django-celery-haystack

https://github.com/mixcloud/django-celery-haystack-SearchIndex

Also provides a queue-based setup, this time centered around Celery. Useful
for keeping the index fresh.

saved_searches

http://github.com/toastdriven/saved_searches

Adds personalization to search. Retains a history of queries run by the various
users on the site (including anonymous users). This can be used to present the
user with their search history and provide most popular/most recent queries
on the site.

haystack-static-pages

http://github.com/trapeze/haystack-static-pages

Provides a simple way to index flat (non-model-based) content on your site.
By using the management command that comes with it, it can crawl all pertinent
pages on your site and add them to search.

django-tumbleweed

http://github.com/mcroydon/django-tumbleweed

Provides a tumblelog-like view to any/all Haystack-enabled models on your
site. Useful for presenting date-based views of search data. Attempts to avoid
the database completely where possible.

Haystack-Enabled Apps

These are reusable apps that ship with SearchIndexes, suitable for quick
integration with Haystack.

	django-faq (freq. asked questions app) - http://github.com/benspaulding/django-faq

	django-essays (blog-like essay app) - http://github.com/bkeating/django-essays

	gtalug (variety of apps) - http://github.com/myles/gtalug

	sciencemuseum (science museum open data) - http://github.com/simonw/sciencemuseum

	vz-wiki (wiki) - http://github.com/jobscry/vz-wiki

	ffmff (events app) - http://github.com/stefreak/ffmff

	Dinette (forums app) - http://github.com/uswaretech/Dinette

	fiftystates_site (site) - http://github.com/sunlightlabs/fiftystates_site

	Open-Knesset (site) - http://github.com/ofri/Open-Knesset

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Installing Search Engines

Solr

Official Download Location: http://www.apache.org/dyn/closer.cgi/lucene/solr/

Solr is Java but comes in a pre=packaged form that requires very little other
than the JRE and Jetty. It’s very performant and has an advanced featureset.
Haystack requires Solr 1.3+. Installation is relatively simple:

curl -O http://apache.mirrors.tds.net/lucene/solr/1.4.1/apache-solr-1.4.1.tgz
tar xvzf apache-solr-1.4.1.tgz
cd apache-solr-1.4.1
cd example
java -jar start.jar

You’ll need to revise your schema. You can generate this from your application
(once Haystack is installed and setup) by running
./manage.py build_solr_schema. Take the output from that command and place
it in apache-solr-1.4.1/example/solr/conf/schema.xml. Then restart Solr.

You’ll also need a Solr binding, pysolr. The official pysolr package,
distributed via PyPI, is the best version to use (2.0.13+). Place pysolr.py
somewhere on your PYTHONPATH.

Note

pysolr has it’s own dependencies that aren’t covered by Haystack. For
best results, you should have an ElementTree variant install (preferably the
lxml variant), httplib2 for timeouts (though it will fall back to
httplib) and either the json module that comes with Python 2.5+ or
simplejson.

More Like This

To enable the “More Like This” functionality in Haystack, you’ll need
to enable the MoreLikeThisHandler. Add the following line to your
solrconfig.xml file within the config tag:

<requestHandler name="/mlt" class="solr.MoreLikeThisHandler" />

Spelling Suggestions

To enable the spelling suggestion functionality in Haystack, you’ll need to
enable the SpellCheckComponent.

The first thing to do is create a special field on your SearchIndex class
that mirrors the text field, but has indexed=False on it. This disables
the post-processing that Solr does, which can mess up your suggestions.
Something like the following is suggested:

class MySearchIndex(indexes.SearchIndex):
 text = indexes.CharField(document=True, use_template=True)
 # ... normal fields then...
 suggestions = indexes.CharField()

 def prepare(self, obj):
 prepared_data = super(NoteIndex, self).prepare(object)
 prepared_data['suggestions'] = prepared_data['text']
 return prepared_data

Then, you enable it in Solr by adding the following line to your
solrconfig.xml file within the config tag:

<searchComponent name="spellcheck" class="solr.SpellCheckComponent">

 <str name="queryAnalyzerFieldType">textSpell</str>

 <lst name="spellchecker">
 <str name="name">default</str>
 <str name="field">suggestions</str>
 <str name="spellcheckIndexDir">./spellchecker1</str>
 <str name="buildOnCommit">true</str>
 </lst>
</searchComponent>

Then change your default handler from:

<requestHandler name="standard" class="solr.StandardRequestHandler" default="true" />

... to ...:

<requestHandler name="standard" class="solr.StandardRequestHandler" default="true">
 <arr name="last-components">
 <str>spellcheck</str>
 </arr>
</requestHandler>

Be warned that the <str name="field">suggestions</str> portion will be specific to
your SearchIndex classes (in this case, assuming the main field is called
text).

Whoosh

Official Download Location: http://bitbucket.org/mchaput/whoosh/

Whoosh is pure Python, so it’s a great option for getting started quickly and
for development, though it does work for small scale live deployments. The
current recommended version is 1.3.1+. You can install via PyPI [http://pypi.python.org/pypi/Whoosh/] using:

sudo easy_install whoosh
... or ...
sudo pip install whoosh

Note that, while capable otherwise, the Whoosh backend does not currently
support “More Like This” or faceting. Support for these features has recently
been added to Whoosh itself & may be present in a future release.

Xapian

Official Download Location: http://xapian.org/download

Xapian is written in C++ so it requires compilation (unless your OS has a
package for it). Installation looks like:

curl -O http://oligarchy.co.uk/xapian/1.0.11/xapian-core-1.0.11.tar.gz
curl -O http://oligarchy.co.uk/xapian/1.0.11/xapian-bindings-1.0.11.tar.gz

tar xvzf xapian-core-1.0.11.tar.gz
tar xvzf xapian-bindings-1.0.11.tar.gz

cd xapian-core-1.0.11
./configure
make
sudo make install

cd ..
cd xapian-bindings-1.0.11
./configure
make
sudo make install

Xapian is a third-party supported backend. It is not included in Haystack
proper due to licensing. To use it, you need both Haystack itself as well as
xapian-haystack. You can download the source from
http://github.com/notanumber/xapian-haystack/tree/master. Installation
instructions can be found on that page as well. The backend, written
by David Sauve (notanumber), fully implements the SearchQuerySet API and is
an excellent alternative to Solr.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Debugging Haystack

There are some common problems people run into when using Haystack for the first
time. Some of the common problems and things to try appear below.

Note

As a general suggestion, your best friend when debugging an issue is to
use the pdb library included with Python. By dropping a
import pdb; pdb.set_trace() in your code before the issue occurs, you
can step through and examine variable/logic as you progress through. Make
sure you don’t commit those pdb lines though.

“No module named haystack.”

This problem usually occurs when first adding Haystack to your project.

	Are you using the haystack directory within your django-haystack
checkout/install?

	Is the haystack directory on your PYTHONPATH? Alternatively, is
haystack symlinked into your project?

	Start a Django shell (./manage.py shell) and try import haystack.
You may receive a different, more descriptive error message.

	Double-check to ensure you have no circular imports. (i.e. module A tries
importing from module B which is trying to import from module A.)

“No results found.” (On the web page)

Several issues can cause no results to be found. Most commonly it is either
not running a rebuild_index to populate your index or having a blank
document=True field, resulting in no content for the engine to search on.

	Do you have a search_sites.py that runs haystack.autodiscover?

	Have you registered your models with the main haystack.site (usually
within your search_indexes.py)?

	Do you have data in your database?

	Have you run a ./manage.py rebuild_index to index all of your content?

	Start a Django shell (./manage.py shell) and try:

>>> from haystack.query import SearchQuerySet
>>> sqs = SearchQuerySet().all()
>>> sqs.count()

	You should get back an integer > 0. If not, check the above and reindex.

>>> sqs[0] # Should get back a SearchResult object.
>>> sqs[0].id # Should get something back like 'myapp.mymodel.1'.
>>> sqs[0].text # ... or whatever your document=True field is.

	If you get back either u'' or None, it means that your data isn’t
making it into the main field that gets searched. You need to check that the
field either has a template that uses the model data, a model_attr that
pulls data directly from the model or a prepare/prepare_FOO method that
populates the data at index time.

	Check the template for your search page and ensure it is looping over the
results properly. Also ensure that it’s either accessing valid fields coming
back from the search engine or that it’s trying to access the associated
model via the {{ result.object.foo }} lookup.

“LockError: [Errno 17] File exists: ‘/path/to/whoosh_index/_MAIN_LOCK’”

This is a Whoosh-specific traceback. It occurs when the Whoosh engine in one
process/thread is locks the index files for writing while another process/thread
tries to access them. This is a common error when using RealTimeSearchIndex
with Whoosh under any kind of load, which is why it’s only recommended for
small sites or development.

A way to solve this is to subclass SearchIndex instead:

from haystack.indexes import *

Change from:
#
class MySearchIndex(RealTimeSearchIndex):
#
to:
class MySearchIndex(SearchIndex):
 ...

The final step is to set up a cron job that runs
./manage.py rebuild_index (optionally with --age=24) that runs nightly
(or however often you need) to refresh the search indexes.

The downside to this is that you lose real-time search. For many people, this
isn’t an issue and this will allow you to scale Whoosh up to a much higher
traffic. If this is not acceptable, you should investigate either the Solr or
Xapian backends.

“Import errors on start-up mentioning ‘handle_registrations’”

When initializing, Haystack attempts to import and register all of the
SearchIndex classes you’ve setup. As a by-product of this, especially in
conjunction with third-party apps that attempt to do similar types of imports,
it’s possible (though rare) to get a traceback very early in the start-up
process, usually mentioning handle_registrations.

There are typically three possible causes for this error:

	A syntax/import error in a file included by the search_indexes.py file

	A circular import

	Another app causing models to load early

The first two causes can be debugged by dropping an
import pdb; pdb.set_trace() at the top of the search_indexes.py where
the error is occurring and stepping through to see the real error.

If neither of those is the case, Haystack provides an advanced setting
(HAYSTACK_ENABLE_REGISTRATIONS - Haystack Settings) to disable this importing
behavior and allow your applications to function.

As a note of caution, setting HAYSTACK_ENABLE_REGISTRATIONS = False in your
settings causes Haystack to be left in an uninitialized state. This means that
none of your SearchIndex classes will be registered and all attempts to use
SearchQuerySet will yield no results. To continue using Haystack, you’ll
need to manually import your search_indexes.py files, either in your
models.py or views.py files (or something similar). Additionally, any
use at the console/management commands may also require similar imports.

Finally, should this occur to you, it would be appreciated if you could report
the issue and the app(s) you’re using that are causing the issue in conjunction
with Haystack on either the mailing list or on the GitHub issue tracker.

“Failed to add documents to Solr: [Reason: None]”

This is a Solr-specific traceback. It generally occurs when there is an error
with your HAYSTACK_SOLR_URL. Since Solr acts as a webservice, you should
test the URL in your web browser. If you receive an error, you may need to
change your URL.

This can also be caused when using old versions of pysolr (2.0.9 and before),
using httplib2 and including a trailing slash in your HAYSTACK_SOLR_URL.
Please upgrade your version of pysolr (2.0.13+).

“Got an unexpected keyword argument ‘boost’”

This is a Solr-specific traceback. This can also be caused when using old
versions of pysolr (2.0.12 and before). Please upgrade your version of
pysolr (2.0.13+).

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Best Practices

What follows are some general recommendations on how to improve your search.
Some tips represent performance benefits, some provide a better search index.
You should evaluate these options for yourself and pick the ones that will
work best for you. Not all situations are created equal and many of these
options could be considered mandatory in some cases and unnecessary premature
optimizations in others. Your mileage may vary.

Good Search Needs Good Content

Most search engines work best when they’re given corpuses with predominantly
text (as opposed to other data like dates, numbers, etc.) in decent quantities
(more than a couple words). This is in stark contrast to the databases most
people are used to, which rely heavily on non-text data to create relationships
and for ease of querying.

To this end, if search is important to you, you should take the time to
carefully craft your SearchIndex subclasses to give the search engine the
best information you can. This isn’t necessarily hard but is worth the
investment of time and thought. Assuming you’ve only ever used the
BasicSearchIndex, in creating custom SearchIndex classes, there are
some easy improvements to make that will make your search better:

	For your document=True field, use a well-constructed template.

	Add fields for data you might want to be able to filter by.

	If the model has related data, you can squash good content from those
related models into the parent model’s SearchIndex.

	Similarly, if you have heavily de-normalized models, it may be best
represented by a single indexed model rather than many indexed models.

Well-Constructed Templates

A relatively unique concept in Haystack is the use of templates associated with
SearchIndex fields. These are data templates, will never been seen by users
and ideally contain no HTML. They are used to collect various data from the
model and structure it as a document for the search engine to analyze and index.

Note

If you read nothing else, this is the single most important thing you can
do to make search on your site better for your users. Good templates can
make or break your search and providing the search engine with good content
to index is critical.

Good templates structure the data well and incorporate as much pertinent text
as possible. This may include additional fields such as titles, author
information, metadata, tags/categories. Without being artificial, you want to
construct as much context as you can. This doesn’t mean you should necessarily
include every field, but you should include fields that provide good content
or include terms you think your users may frequently search on.

Unless you have very unique numbers or dates, neither of these types of data
are a good fit within templates. They are usually better suited to other
fields for filtering within a SearchQuerySet.

Additional Fields For Filtering

Documents by themselves are good for generating indexes of content but are
generally poor for filtering content, for instance, by date. All search engines
supported by Haystack provide a means to associate extra data as
attributes/fields on a record. The database analogy would be adding extra
columns to the table for filtering.

Good candidates here are date fields, number fields, de-normalized data from
related objects, etc. You can expose these things to users in the form of a
calendar range to specify, an author to look up or only data from a certain
series of numbers to return.

You will need to plan ahead and anticipate what you might need to filter on,
though with each field you add, you increase storage space usage. It’s generally
NOT recommended to include every field from a model, just ones you are
likely to use.

Related Data

Related data is somewhat problematic to deal with, as most search engines are
better with documents than they are with relationships. One way to approach this
is to de-normalize a related child object or objects into the parent’s document
template. The inclusion of a foreign key’s relevant data or a simple Django
{% for %} templatetag to iterate over the related objects can increase the
salient data in your document. Be careful what you include and how you structure
it, as this can have consequences on how well a result might rank in your
search.

Avoid Hitting The Database

A very easy but effective thing you can do to drastically reduce hits on the
database is to pre-render your search results using stored fields then disabling
the load_all aspect of your SearchView.

Warning

This technique may cause a substantial increase in the size of your index
as you are basically using it as a storage mechanism.

To do this, you setup one or more stored fields (indexed=False) on your
SearchIndex classes. You should specify a template for the field, filling it
with the data you’d want to display on your search results pages. When the model
attached to the SearchIndex is placed in the index, this template will get
rendered and stored in the index alongside the record.

Note

The downside of this method is that the HTML for the result will be locked
in once it is indexed. To make changes to the structure, you’d have to
reindex all of your content. It also limits you to a single display of the
content (though you could use multiple fields if that suits your needs).

The second aspect is customizing your SearchView and its templates. First,
pass the load_all=False to your SearchView, ideally in your URLconf.
This prevents the SearchQuerySet from loading all models objects for results
ahead of time. Then, in your template, simply display the stored content from
your SearchIndex as the HTML result.

Warning

To do this, you must absolutely avoid using {{ result.object }} or any
further accesses beyond that. That call will hit the database, not only
nullifying your work on lessening database hits, but actually making it
worse as there will now be at least query for each result, up from a single
query for each type of model with load_all=True.

Content-Type Specific Templates

Frequently, when displaying results, you’ll want to customize the HTML output
based on what model the result represents.

In practice, the best way to handle this is through the use of include
along with the data on the SearchResult.

Your existing loop might look something like:

{% for result in page.object_list %}
 <p>
 {{ result.object.title }}
 </p>
{% empty %}
 <p>No results found.</p>
{% endfor %}

An improved version might look like:

{% for result in page.object_list %}
 {% if result.content_type == "blog.post" %}
 {% include "search/includes/blog/post.html" %}
 {% endif %}
 {% if result.content_type == "media.photo" %}
 {% include "search/includes/media/photo.html" %}
 {% endif %}
{% empty %}
 <p>No results found.</p>
{% endfor %}

Those include files might look like:

search/includes/blog/post.html
<div class="post_result">
 <h3>{{ result.object.title }}</h3>

 <p>{{ result.object.tease }}</p>
</div>

search/includes/media/photo.html
<div class="photo_result">

 <p>Taken By {{ result.object.taken_by }}</p>
</div>

You can make this even better by standardizing on an includes layout, then
writing a template tag or filter that generates the include filename. Usage
might looks something like:

{% for result in page.object_list %}
 {% with result|search_include as fragment %}
 {% include fragment %}
 {% endwith %}
{% empty %}
 <p>No results found.</p>
{% endfor %}

Real-Time Search

If your site sees heavy search traffic and up-to-date information is very important,
Haystack provides a way to constantly keep your index up to date. By using the
RealTimeSearchIndex class instead of the SearchIndex class, Haystack will
automatically update the index whenever a model is saved/deleted.

You can find more information within the SearchIndex API documentation.

Use Of A Queue For A Better User Experience

By default, you have to manually reindex content, Haystack immediately tries to merge
it into the search index. If you have a write-heavy site, this could mean your
search engine may spend most of its time churning on constant merges. If you can
afford a small delay between when a model is saved and when it appears in the
search results, queuing these merges is a good idea.

You gain a snappier interface for users as updates go into a queue (a fast
operation) and then typical processing continues. You also get a lower churn
rate, as most search engines deal with batches of updates better than many
single updates. You can also use this to distribute load, as the queue consumer
could live on a completely separate server from your webservers, allowing you
to tune more efficiently.

Implementing this is relatively simple. There are two parts, creating a new
QueuedSearchIndex class and creating a queue processing script to handle the
actual updates.

For the QueuedSearchIndex, simply inherit from the SearchIndex provided
by Haystack and override the _setup_save/_setup_delete methods. These
methods usually attach themselves to their model’s post_save/post_delete
signals and call the backend to update or remove a record. You should override
this behavior and place a message in your queue of choice. At a minimum, you’ll
want to include the model you’re indexing and the id of the model within that
message, so that you can retrieve the proper index from the SearchSite in
your consumer. Then alter all of your SearchIndex classes to inherit from
this new class. Now all saves/deletes will be handled by the queue and you
should receive a speed boost.

For the consumer, this is much more specific to the queue used and your desired
setup. At a minimum, you will need to periodically consume the queue, fetch the
correct index from the SearchSite for your application, load the model from
the message and pass that model to the update_object or remove_object
methods on the SearchIndex. Proper grouping, batching and intelligent
handling are all additional things that could be applied on top to further
improve performance.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Highlighting

Haystack supports two different methods of highlighting. You can either use
SearchQuerySet.highlight or the built-in {% highlight %} template tag,
which uses the Highlighter class. Each approach has advantages and
disadvantages you need to weigh when deciding which to use.

If you want portable, flexible, decently fast code, the
{% highlight %} template tag (or manually using the underlying
Highlighter class) is the way to go. On the other hand, if you care more
about speed and will only ever be using one backend,
SearchQuerySet.highlight may suit your needs better.

Use of SearchQuerySet.highlight is documented in the
SearchQuerySet API documentation and the {% highlight %} tag is
covered in the Template Tags documentation, so the rest of this material
will cover the Highlighter implementation.

Highlighter

The Highlighter class is a pure-Python implementation included with Haystack
that’s designed for flexibility. If you use the {% highlight %} template
tag, you’ll be automatically using this class. You can also use it manually in
your code. For example:

>>> from haystack.utils import Highlighter

>>> my_text = 'This is a sample block that would be more meaningful in real life.'
>>> my_query = 'block meaningful'

>>> highlight = Highlighter(my_query)
>>> highlight.highlight(my_text)
u'...block that would be more meaningful in real life.'

The default implementation takes three optional kwargs: html_tag,
css_class and max_length. These allow for basic customizations to the
output, like so:

>>> from haystack.utils import Highlighter

>>> my_text = 'This is a sample block that would be more meaningful in real life.'
>>> my_query = 'block meaningful'

>>> highlight = Highlighter(my_query, html_tag='div', css_class='found', max_length=35)
>>> highlight.highlight(my_text)
u'...<div class="found">block</div> that would be more <div class="found">meaningful</div>...'

Further, if this implementation doesn’t suit your needs, you can define your own
custom highlighter class. As long as it implements the API you’ve just seen, it
can highlight however you choose. For example:

In ``myapp/utils.py``...
from haystack.utils import Highlighter

class BorkHighlighter(Highlighter):
 def render_html(self, highlight_locations=None, start_offset=None, end_offset=None):
 highlighted_chunk = self.text_block[start_offset:end_offset]

 for word in self.query_words:
 highlighted_chunk = highlighted_chunk.replace(word, 'Bork!')

 return highlighted_chunk

Then set the HAYSTACK_CUSTOM_HIGHLIGHTER setting to
myapp.utils.BorkHighlighter. Usage would then look like:

>>> highlight = BorkHighlighter(my_query)
>>> highlight.highlight(my_text)
u'Bork! that would be more Bork! in real life.'

Now the {% highlight %} template tag will also use this highlighter.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Faceting

What Is Faceting?

Faceting is a way to provide users with feedback about the number of documents
which match terms they may be interested in. At it’s simplest, it gives
document counts based on words in the corpus, date ranges, numeric ranges or
even advanced queries.

Faceting is particularly useful when trying to provide users with drill-down
capabilities. The general workflow in this regard is:

	You can choose what you want to facet on.

	The search engine will return the counts it sees for that match.

	You display those counts to the user and provide them with a link.

	When the user chooses a link, you narrow the search query to only include
those conditions and display the rests, potentially with further facets.

Note

Faceting can be difficult, especially in providing the user with the right
number of options and/or the right areas to be able to drill into. This
is unique to every situation and demands following what real users need.

You may want to consider logging queries and looking at popular terms to
help you narrow down how you can help your users.

Haystack provides functionality so that all of the above steps are possible.
From the ground up, let’s build a faceted search setup. This assumes that you
have been to work through the Getting Started with Haystack and have a working Haystack
installation. The same setup from the Getting Started with Haystack applies here.

1. Determine Facets And SearchQuerySet

Determining what you want to facet on isn’t always easy. For our purposes,
we’ll facet on the author field.

In order to facet effectively, the search engine should store both a standard
representation of your data as well as exact version to facet on. This is
generally accomplished by duplicating the field and storing it via two
different types. Duplication is suggested so that those fields are still
searchable in the standard ways.

To inform Haystack of this, you simply pass along a faceted=True parameter
on the field(s) you wish to facet on. So to modify our existing example:

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user', faceted=True)
 pub_date = DateTimeField(model_attr='pub_date')

Haystack quietly handles all of the backend details for you, creating a similar
field to the type you specified with _exact appended. Our example would now
have both a author and author_exact field, though this is largely an
implementation detail.

To pull faceting information out of the index, we’ll use the
SearchQuerySet.facet method to setup the facet and the
SearchQuerySet.facet_counts method to retrieve back the counts seen.

Experimenting in a shell (./manage.py shell) is a good way to get a feel
for what various facets might look like:

>>> from haystack.query import SearchQuerySet
>>> sqs = SearchQuerySet().facet('author')
>>> sqs.facet_counts()
{
 'dates': {},
 'fields': {
 'author': [
 ('john', 4),
 ('daniel', 2),
 ('sally', 1),
 ('terry', 1),
],
 },
 'queries': {}
}

Note

Note that, despite the duplication of fields, you should provide the
regular name of the field when faceting. Haystack will intelligently
handle the underlying details and mapping.

As you can see, we get back a dictionary which provides access to the three
types of facets available: fields, dates and queries. Since we only
faceted on the author field (which actually facets on the author_exact
field managed by Haystack), only the fields key has any data
associated with it. In this case, we have a corpus of eight documents with four
unique authors.

Note

Facets are chainable, like most SearchQuerySet methods. However, unlike
most SearchQuerySet methods, they are NOT affected by filter or
similar methods. The only method that has any effect on facets is the
narrow method (which is how you provide drill-down).

Now that we have the facet we want, it’s time to implement it.

2. Switch to the FacetedSearchView and FacetedSearchForm

There are three things that we’ll need to do to expose facets to our frontend.
The first is construct the SearchQuerySet we want to use. We should have
that from the previous step. The second is to switch to the
FacetedSearchView. This view is useful because it prepares the facet counts
and provides them in the context as facets.

Optionally, the third step is to switch to the FacetedSearchForm. As it
currently stands, this is only useful if you want to provide drill-down, though
it may provide more functionality in the future. We’ll do it for the sake of
having it in place but know that it’s not required.

In your URLconf, you’ll need to switch to the FacetedSearchView. Your
URLconf should resemble:

from django.conf.urls.defaults import *
from haystack.forms import FacetedSearchForm
from haystack.query import SearchQuerySet
from haystack.views import FacetedSearchView

sqs = SearchQuerySet().facet('author')

urlpatterns = patterns('haystack.views',
 url(r'^$', FacetedSearchView(form_class=FacetedSearchForm, searchqueryset=sqs), name='haystack_search'),
)

The FacetedSearchView will now instantiate the FacetedSearchForm and use
the SearchQuerySet we provided. Now, a facets variable will be present
in the context. This is added in an overridden extra_context method.

3. Display The Facets In The Template

Templating facets involves simply adding an extra bit of processing to display
the facets (and optionally to link to provide drill-down). An example template
might look like this:

<form method="get" action=".">
 <table>
 <tbody>
 {{ form.as_table }}
 <tr>
 <td> </td>
 <td><input type="submit" value="Search"></td>
 </tr>
 </tbody>
 </table>
</form>

{% if query %}
 <!-- Begin faceting. -->
 <h2>By Author</h2>

 <div>
 <dl>
 {% if facets.fields.author %}
 <dt>Author</dt>
 {# Provide only the top 5 authors #}
 {% for author in facets.fields.author|slice:":5" %}
 <dd>{{ author.0 }} ({{ author.1 }})</dd>
 {% endfor %}
 {% else %}
 <p>No author facets.</p>
 {% endif %}
 </dl>
 </div>
 <!-- End faceting -->

 <!-- Display results... -->
 {% for result in results %}
 <div class="search_result">
 <h3>{{ result.object.title }}</h3>

 <p>{{ result.object.body|truncatewords:80 }}</p>
 </div>
 {% empty %}
 <p>Sorry, no results found.</p>
 {% endfor %}
{% endif %}

Displaying the facets is a matter of looping through the facets you want and
providing the UI to suit. The author.0 is the facet text from the backend
and the author.1 is the facet count.

4. Narrowing The Search

We’ve also set ourselves up for the last bit, the drill-down aspect. By
appending on the selected_facets to the URLs, we’re informing the
FacetedSearchForm that we want to narrow our results to only those
containing the author we provided.

For a concrete example, if the facets on author come back as:

{
 'dates': {},
 'fields': {
 'author': [
 ('john', 4),
 ('daniel', 2),
 ('sally', 1),
 ('terry', 1),
],
 },
 'queries': {}
}

You should present a list similar to:

 john (4)
 daniel (2)
 sally (1)
 terry (1)

Warning

Haystack can automatically handle most details around faceting. However,
since selected_facets is passed directly to narrow, it must use the
duplicated field name. Improvements to this are planned but incomplete.

This is simply the default behavior but it is possible to override or provide
your own form which does additional processing. You could also write your own
faceted SearchView, which could provide additional/different facets based
on facets chosen. There is a wide range of possibilities available to help the
user navigate your content.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Autocomplete

Autocomplete is becoming increasingly common as an add-on to search. Haystack
makes it relatively simple to implement. There are two steps in the process,
one to prepare the data and one to implement the actual search.

Step 1. Setup The Data

To do autocomplete effectively, the search backend uses n-grams (essentially
a small window passed over the string). Because this alters the way your
data needs to be stored, the best approach is to add a new field to your
SearchIndex that contains the text you want to autocomplete on.

You have two choices: NgramField & EdgeNgramField. Though very similar,
the choice of field is somewhat important.

	If you’re working with standard text, EdgeNgramField tokenizes on
whitespace. This prevents incorrect matches when part of two different words
are mashed together as one n-gram. This is what most users should use.

	If you’re working with Asian languages or want to be able to autocomplete
across word boundaries, NgramField should be what you use.

Example (continuing from the tutorial):

import datetime
from haystack import indexes
from haystack import site
from myapp.models import Note

class NoteIndex(indexes.SearchIndex):
 text = indexes.CharField(document=True, use_template=True)
 author = indexes.CharField(model_attr='user')
 pub_date = indexes.DateTimeField(model_attr='pub_date')
 # We add this for autocomplete.
 content_auto = indexes.EdgeNgramField(model_attr='content')

 def index_queryset(self):
 """Used when the entire index for model is updated."""
 return Note.objects.filter(pub_date__lte=datetime.datetime.now())

site.register(Note, NoteIndex)

As with all schema changes, you’ll need to rebuild/update your index after
making this change.

Step 2. Performing The Query

Haystack ships with a convenience method to perform most autocomplete searches.
You simply provide a field & the query you wish to search on to the
SearchQuerySet.autocomplete method. Given the previous example, an example
search would look like:

from haystack.query import SearchQuerySet

SearchQuerySet().autocomplete(content_auto='old')
Result match things like 'goldfish', 'cuckold' & 'older'.

The results from the SearchQuerySet.autocomplete method are full search
results, just like any regular filter.

If you need more control over your results, you can use standard
SearchQuerySet.filter calls. For instance:

from haystack.query import SearchQuerySet

sqs = SearchQuerySet().filter(content_auto=request.GET.get('q', ''))

This can also be extended to use SQ for more complex queries (and is what’s
being done under the hood in the SearchQuerySet.autocomplete method).

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Boost

Scoring is a critical component of good search. Normal full-text searches
automatically score a document based on how well it matches the query provided.
However, sometimes you want certain documents to score better than they
otherwise would. Boosting is a way to achieve this. There are three types of
boost:

	Term Boost

	Document Boost

	Field Boost

Note

Document & Field boost support was added in Haystack 1.1.

Despite all being types of boost, they take place at different times and have
slightly different effects on scoring.

Term boost happens at query time (when the search query is run) and is based
around increasing the score is a certain word/phrase is seen.

On the other hand, document & field boosts take place at indexing time (when
the document is being added to the index). Document boost causes the relevance
of the entire result to go up, where field boost causes only searches within
that field to do better.

Term Boost

Term boosting is achieved by using SearchQuerySet.boost. You provide it
the term you want to boost on & a floating point value (based around 1.0
as 100% - no boost).

Example:

Slight increase in relevance for documents that include "banana".
sqs = SearchQuerySet().boost('banana', 1.1)

Big decrease in relevance for documents that include "blueberry".
sqs = SearchQuerySet().boost('blueberry', 0.8)

See the SearchQuerySet API docs for more details on using this method.

Document Boost

Document boosting is done by adding a boost field to the prepared data
SearchIndex creates. The best way to do this is to override
SearchIndex.prepare:

from haystack import indexes
from notes.models import Note

class NoteSearchIndex(indexes.SearchIndex):
 # Your regular fields here then...

 def prepare(self, obj):
 data = super(NoteSearchIndex, self).prepare(obj)
 data['boost'] = 1.1
 return data

Another approach might be to add a new field called boost. However, this
can skew your schema and is not encouraged.

Field Boost

Field boosting is enabled by setting the boost kwarg on the desired field.
An example of this might be increasing the significance of a title:

from haystack import indexes
from notes.models import Note

class NoteSearchIndex(indexes.SearchIndex):
 text = indexes.CharField(document=True, use_template=True)
 title = indexes.CharField(model_attr='title', boost=1.125)

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Advanced Topics

Swapping Backends

As part of the backend loading infrastructure, you can load more than one
search backend at a time or dynamically swap out the backend being used. The
following code demonstrates loading the simple backend:

import haystack
simple_backend = haystack.load_backend('simple')

If no argument is provided, Haystack will load whatever is in the
HAYSTACK_SEARCH_ENGINE setting. Otherwise, any of the following strings
will load their respective backend.

	solr

	xapian

	whoosh

	simple

	dummy

You can also provide the “short” portion of the name (before the _backend)
of a custom backend. Haystack will attempt to load that backend instead from
your PYTHONPATH.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

SearchQuerySet API

	
class SearchQuerySet(site=None, query=None)

	

The SearchQuerySet class is designed to make performing a search and
iterating over its results easy and consistent. For those familiar with Django’s
ORM QuerySet, much of the SearchQuerySet API should feel familiar.

Why Follow QuerySet?

A couple reasons to follow (at least in part) the QuerySet API:

	Consistency with Django

	Most Django programmers have experience with the ORM and can use this
knowledge with SearchQuerySet.

And from a high-level perspective, QuerySet and SearchQuerySet do very similar
things: given certain criteria, provide a set of results. Both are powered by
multiple backends, both are abstractions on top of the way a query is performed.

Quick Start

For the impatient:

from haystack.query import SearchQuerySet
all_results = SearchQuerySet().all()
hello_results = SearchQuerySet().filter(content='hello')
hello_world_results = SearchQuerySet().filter(content='hello world')
unfriendly_results = SearchQuerySet().exclude(content='hello').filter(content='world')
recent_results = SearchQuerySet().order_by('-pub_date')[:5]

SearchQuerySet

By default, SearchQuerySet provide the documented functionality. You can
extend with your own behavior by simply subclassing from SearchQuerySet and
adding what you need, then using your subclass in place of SearchQuerySet.

Most methods in SearchQuerySet “chain” in a similar fashion to QuerySet.
Additionally, like QuerySet, SearchQuerySet is lazy (meaning it evaluates the
query as late as possible). So the following is valid:

from haystack.query import SearchQuerySet
results = SearchQuerySet().exclude(content='hello').filter(content='world').order_by('-pub_date').boost('title', 0.5)[10:20]

The content Shortcut

Searching your document fields is a very common activity. To help mitigate
possible differences in SearchField names (and to help the backends deal
with search queries that inspect the main corpus), there is a special field
called content. You may use this in any place that other fields names would
work (e.g. filter, exclude, etc.) to indicate you simply want to
search the main documents.

For example:

from haystack.query import SearchQuerySet

This searches whatever fields were marked ``document=True``.
results = SearchQuerySet().exclude(content='hello')

This special pseudo-field works best with the exact lookup and may yield
strange or unexpected results with the other lookups.

SearchQuerySet Methods

The primary interface to search in Haystack is through the SearchQuerySet
object. It provides a clean, programmatic, portable API to the search backend.
Many aspects are also “chainable”, meaning you can call methods one after another, each
applying their changes to the previous SearchQuerySet and further narrowing
the search.

All SearchQuerySet objects implement a list-like interface, meaning you can
perform actions like getting the length of the results, accessing a result at an
offset or even slicing the result list.

Methods That Return A SearchQuerySet

all

	
SearchQuerySet.all(self):

	

Returns all results for the query. This is largely a no-op (returns an identical
copy) but useful for denoting exactly what behavior is going on.

none

	
SearchQuerySet.none(self):

	

Returns an EmptySearchQuerySet that behaves like a SearchQuerySet but
always yields no results.

filter

	
SearchQuerySet.filter(self, **kwargs)

	

Filters the search by looking for (and including) certain attributes.

The lookup parameters (**kwargs) should follow the Field lookups below.
If you specify more than one pair, they will be joined in the query according to
the HAYSTACK_DEFAULT_OPERATOR setting (defaults to AND).

If a string with one or more spaces in it is specified as the value, an exact
match will be performed on that phrase.

Warning

Any data you pass to filter is passed along unescaped. If
you don’t trust the data you’re passing along, you should either use
auto_query or use the clean method on your SearchQuery to
sanitize the data.

Example:

SearchQuerySet().filter(content='foo')

SearchQuerySet().filter(content='foo', pub_date__lte=datetime.date(2008, 1, 1))

Identical to the previous example.
SearchQuerySet().filter(content='foo').filter(pub_date__lte=datetime.date(2008, 1, 1))

To escape user data:
sqs = SearchQuerySet()
sqs = sqs.filter(title=sqs.query.clean(user_query))

exclude

	
SearchQuerySet.exclude(self, **kwargs)

	

Narrows the search by ensuring certain attributes are not included.

Warning

Any data you pass to exclude is passed along unescaped. If
you don’t trust the data you’re passing along, you should either use
auto_query or use the clean method on your SearchQuery to
sanitize the data.

Example:

SearchQuerySet().exclude(content='foo')

filter_and

	
SearchQuerySet.filter_and(self, **kwargs)

	

Narrows the search by looking for (and including) certain attributes. Join
behavior in the query is forced to be AND. Used primarily by the filter
method.

filter_or

	
SearchQuerySet.filter_or(self, **kwargs)

	

Narrows the search by looking for (and including) certain attributes. Join
behavior in the query is forced to be OR. Used primarily by the filter
method.

order_by

	
SearchQuerySet.order_by(self, *args)

	

Alters the order in which the results should appear. Arguments should be strings
that map to the attributes/fields within the index. You may specify multiple
fields by comma separating them:

SearchQuerySet().filter(content='foo').order_by('author', 'pub_date')

Default behavior is ascending order. To specify descending order, prepend the
string with a -:

SearchQuerySet().filter(content='foo').order_by('-pub_date')

Note

In general, ordering is locale-specific. Haystack makes no effort to try to
reconcile differences between characters from different languages. This
means that accented characters will sort closely with the same character
and NOT necessarily close to the unaccented form of the character.

If you want this kind of behavior, you should override the prepare_FOO
methods on your SearchIndex objects to transliterate the characters
as you see fit.

highlight

	
SearchQuerySet.highlight(self)

	

If supported by the backend, the SearchResult objects returned will include
a highlighted version of the result:

sqs = SearchQuerySet().filter(content='foo').highlight()
result = sqs[0]
result.highlighted['text'][0] # u'Two computer scientists walk into a bar. The bartender says "Foo!".'

models

	
SearchQuerySet.models(self, *models)

	

Accepts an arbitrary number of Model classes to include in the search. This will
narrow the search results to only include results from the models specified.

Example:

SearchQuerySet().filter(content='foo').models(BlogEntry, Comment)

result_class

	
SearchQuerySet.result_class(self, klass)

	

Allows specifying a different class to use for results.

Overrides any previous usages. If None is provided, Haystack will
revert back to the default SearchResult object.

Example:

SearchQuerySet().result_class(CustomResult)

boost

	
SearchQuerySet.boost(self, term, boost_value)

	

Boosts a certain term of the query. You provide the term to be boosted and the
value is the amount to boost it by. Boost amounts may be either an integer or a
float.

Example:

SearchQuerySet().filter(content='foo').boost('bar', 1.5)

facet

	
SearchQuerySet.facet(self, field)

	

Adds faceting to a query for the provided field. You provide the field (from one
of the SearchIndex classes) you like to facet on.

In the search results you get back, facet counts will be populated in the
SearchResult object. You can access them via the facet_counts method.

Example:

Count document hits for each author within the index.
SearchQuerySet().filter(content='foo').facet('author')

date_facet

	
SearchQuerySet.date_facet(self, field, start_date, end_date, gap_by, gap_amount=1)

	

Adds faceting to a query for the provided field by date. You provide the field
(from one of the SearchIndex classes) you like to facet on, a start_date
(either datetime.datetime or datetime.date), an end_date and the
amount of time between gaps as gap_by (one of 'year', 'month',
'day', 'hour', 'minute' or 'second').

You can also optionally provide a gap_amount to specify a different
increment than 1. For example, specifying gaps by week (every seven days)
would would be gap_by='day', gap_amount=7).

In the search results you get back, facet counts will be populated in the
SearchResult object. You can access them via the facet_counts method.

Example:

Count document hits for each day between 2009-06-07 to 2009-07-07 within the index.
SearchQuerySet().filter(content='foo').date_facet('pub_date', start_date=datetime.date(2009, 6, 7), end_date=datetime.date(2009, 7, 7), gap_by='day')

query_facet

	
SearchQuerySet.query_facet(self, field, query)

	

Adds faceting to a query for the provided field with a custom query. You provide
the field (from one of the SearchIndex classes) you like to facet on and the
backend-specific query (as a string) you’d like to execute.

Please note that this is NOT portable between backends. The syntax is entirely
dependent on the backend. No validation/cleansing is performed and it is up to
the developer to ensure the query’s syntax is correct.

In the search results you get back, facet counts will be populated in the
SearchResult object. You can access them via the facet_counts method.

Example:

Count document hits for authors that start with 'jo' within the index.
SearchQuerySet().filter(content='foo').query_facet('author', 'jo*')

narrow

	
SearchQuerySet.narrow(self, query)

	

Pulls a subset of documents from the search engine to search within. This is
for advanced usage, especially useful when faceting.

Example:

Search, from recipes containing 'blend', for recipes containing 'banana'.
SearchQuerySet().narrow('blend').filter(content='banana')

Using a fielded search where the recipe's title contains 'smoothie', find all recipes published before 2009.
SearchQuerySet().narrow('title:smoothie').filter(pub_date__lte=datetime.datetime(2009, 1, 1))

By using narrow, you can create drill-down interfaces for faceting by
applying narrow calls for each facet that gets selected.

This method is different from SearchQuerySet.filter() in that it does not
affect the query sent to the engine. It pre-limits the document set being
searched. Generally speaking, if you’re in doubt of whether to use
filter or narrow, use filter.

Note

This method is, generally speaking, not necessarily portable between
backends. The syntax is entirely dependent on the backend, though most
backends have a similar syntax for basic fielded queries. No
validation/cleansing is performed and it is up to the developer to ensure
the query’s syntax is correct.

raw_search

	
SearchQuerySet.raw_search(self, query_string, **kwargs)

	

Passes a raw query directly to the backend. This is for advanced usage, where
the desired query can not be expressed via SearchQuerySet.

Warning

Unlike many of the other methods on SearchQuerySet, this method does
not chain by default (depends on the backend). Any other attributes on the
SearchQuerySet are ignored and only the provided query is run.

Example:

In the case of Solr... (this example could be expressed with SearchQuerySet)
SearchQuerySet().raw_search('django_ct:blog.blogentry "However, it is"')

Please note that this is NOT portable between backends. The syntax is entirely
dependent on the backend. No validation/cleansing is performed and it is up to
the developer to ensure the query’s syntax is correct.

Further, the use of **kwargs are completely undocumented intentionally. If
a third-party backend can implement special features beyond what’s present, it
should use those **kwargs for passing that information. Developers should
be careful to make sure there are no conflicts with the backend’s search
method, as that is called directly.

load_all

	
SearchQuerySet.load_all(self)

	

Efficiently populates the objects in the search results. Without using this
method, DB lookups are done on a per-object basis, resulting in many individual
trips to the database. If load_all is used, the SearchQuerySet will
group similar objects into a single query, resulting in only as many queries as
there are different object types returned.

Example:

SearchQuerySet().filter(content='foo').load_all()

load_all_queryset

	
SearchQuerySet.load_all_queryset(self, model_class, queryset)

	

Deprecated for removal before Haystack 1.0-final.

Please see the docs on RelatedSearchQuerySet.

auto_query

	
SearchQuerySet.auto_query(self, query_string)

	

Performs a best guess constructing the search query.

This method is intended for common use directly with a user’s query. It is a
shortcut to the other API methods that follows generally established search
syntax without requiring each developer to implement their own parser.

It handles exact matches (specified with single or double quotes), negation (
using a - immediately before the term) and joining remaining terms with the
operator specified in HAYSTACK_DEFAULT_OPERATOR.

Example:

SearchQuerySet().auto_query('goldfish "old one eye" -tank')

... is identical to...
SearchQuerySet().filter(content='old one eye').filter(content='goldfish').exclude(content='tank')

This method is somewhat naive but works well enough for simple, common cases.

autocomplete

A shortcut method to perform an autocomplete search.

Must be run against fields that are either NgramField or
EdgeNgramField.

Example:

SearchQuerySet().autocomplete(title_autocomplete='gol')

more_like_this

	
SearchQuerySet.more_like_this(self, model_instance)

	

Finds similar results to the object passed in.

You should pass in an instance of a model (for example, one fetched via a
get in Django’s ORM). This will execute a query on the backend that searches
for similar results. The instance you pass in should be an indexed object.
Previously called methods will have an effect on the provided results.

It will evaluate its own backend-specific query and populate the
SearchQuerySet` in the same manner as other methods.

Example:

entry = Entry.objects.get(slug='haystack-one-oh-released')
mlt = SearchQuerySet().more_like_this(entry)
mlt.count() # 5
mlt[0].object.title # "Haystack Beta 1 Released"

...or...
mlt = SearchQuerySet().filter(public=True).exclude(pub_date__lte=datetime.date(2009, 7, 21)).more_like_this(entry)
mlt.count() # 2
mlt[0].object.title # "Haystack Beta 1 Released"

Methods That Do Not Return A SearchQuerySet

count

	
SearchQuerySet.count(self)

	

Returns the total number of matching results.

This returns an integer count of the total number of results the search backend
found that matched. This method causes the query to evaluate and run the search.

Example:

SearchQuerySet().filter(content='foo').count()

best_match

	
SearchQuerySet.best_match(self)

	

Returns the best/top search result that matches the query.

This method causes the query to evaluate and run the search. This method returns
a SearchResult object that is the best match the search backend found:

foo = SearchQuerySet().filter(content='foo').best_match()
foo.id # Something like 5.

Identical to:
foo = SearchQuerySet().filter(content='foo')[0]

latest

	
SearchQuerySet.latest(self, date_field)

	

Returns the most recent search result that matches the query.

This method causes the query to evaluate and run the search. This method returns
a SearchResult object that is the most recent match the search backend
found:

foo = SearchQuerySet().filter(content='foo').latest('pub_date')
foo.id # Something like 3.

Identical to:
foo = SearchQuerySet().filter(content='foo').order_by('-pub_date')[0]

facet_counts

	
SearchQuerySet.facet_counts(self)

	

Returns the facet counts found by the query. This will cause the query to
execute and should generally be used when presenting the data (template-level).

You receive back a dictionary with three keys: fields, dates and
queries. Each contains the facet counts for whatever facets you specified
within your SearchQuerySet.

Note

The resulting dictionary may change before 1.0 release. It’s fairly
backend-specific at the time of writing. Standardizing is waiting on
implementing other backends that support faceting and ensuring that the
results presented will meet their needs as well.

Example:

Count document hits for each author.
sqs = SearchQuerySet().filter(content='foo').facet('author')

sqs.facet_counts()
Gives the following response:
{
'dates': {},
'fields': {
'author': [
('john', 4),
('daniel', 2),
('sally', 1),
('terry', 1),
],
},
'queries': {}
}

spelling_suggestion

	
SearchQuerySet.spelling_suggestion(self, preferred_query=None)

	

Returns the spelling suggestion found by the query.

To work, you must set settings.HAYSTACK_INCLUDE_SPELLING (see
Haystack Settings) to True. Otherwise, None will be returned.

This method causes the query to evaluate and run the search if it hasn’t already
run. Search results will be populated as normal but with an additional spelling
suggestion. Note that this does NOT run the revised query, only suggests
improvements.

If provided, the optional argument to this method lets you specify an alternate
query for the spelling suggestion to be run on. This is useful for passing along
a raw user-provided query, especially when there are many methods chained on the
SearchQuerySet.

Example:

sqs = SearchQuerySet().auto_query('mor exmples')
sqs.spelling_suggestion() # u'more examples'

...or...
suggestion = SearchQuerySet().spelling_suggestion('moar exmples')
suggestion # u'more examples'

values

	
SearchQuerySet.values(self, *fields)

	

Returns a list of dictionaries, each containing the key/value pairs for the
result, exactly like Django’s ValuesQuerySet.

This method causes the query to evaluate and run the search if it hasn’t already
run.

You must provide a list of one or more fields as arguments. These fields will
be the ones included in the individual results.

Example:

sqs = SearchQuerySet().auto_query('banana').values('title', 'description')

values_list

	
SearchQuerySet.values_list(self, *fields, **kwargs)

	

Returns a list of field values as tuples, exactly like Django’s
ValuesListQuerySet.

This method causes the query to evaluate and run the search if it hasn’t already
run.

You must provide a list of one or more fields as arguments. These fields will
be the ones included in the individual results.

You may optionally also provide a flat=True kwarg, which in the case of a
single field being provided, will return a flat list of that field rather than
a list of tuples.

Example:

sqs = SearchQuerySet().auto_query('banana').values_list('title', 'description')

...or just the titles as a flat list...
sqs = SearchQuerySet().auto_query('banana').values_list('title', flat=True)

Field Lookups

The following lookup types are supported:

	exact

	gt

	gte

	lt

	lte

	in

	startswith

	range

These options are similar in function to the way Django’s lookup types work.
The actual behavior of these lookups is backend-specific.

Warning

The startswith filter is strongly affected by the other ways the engine
parses data, especially in regards to stemming (see Glossary). This
can mean that if the query ends in a vowel or a plural form, it may get
stemmed before being evaluated.

This is both backend-specific and yet fairly consistent between engines,
and may be the cause of sometimes unexpected results.

Example:

SearchQuerySet().filter(content='foo')

Identical to:
SearchQuerySet().filter(content__exact='foo')

Other usages look like:
SearchQuerySet().filter(pub_date__gte=datetime.date(2008, 1, 1), pub_date__lt=datetime.date(2009, 1, 1))
SearchQuerySet().filter(author__in=['daniel', 'john', 'jane'])
SearchQuerySet().filter(view_count__range=[3, 5])

EmptySearchQuerySet

Also included in Haystack is an EmptySearchQuerySet class. It behaves just
like SearchQuerySet but will always return zero results. This is useful for
places where you want no query to occur or results to be returned.

RelatedSearchQuerySet

Sometimes you need to filter results based on relations in the database that are
not present in the search index or are difficult to express that way. To this
end, RelatedSearchQuerySet allows you to post-process the search results by
calling load_all_queryset.

Warning

RelatedSearchQuerySet can have negative performance implications.
Because results are excluded based on the database after the search query
has been run, you can’t guarantee offsets within the cache. Therefore, the
entire cache that appears before the offset you request must be filled in
order to produce consistent results. On large result sets and at higher
slices, this can take time.

This is the old behavior of SearchQuerySet, so performance is no worse
than the early days of Haystack.

It supports all other methods that the standard SearchQuerySet does, with
the addition of the load_all_queryset method and paying attention to the
load_all_queryset method of SearchIndex objects when populating the
cache.

load_all_queryset

	
RelatedSearchQuerySet.load_all_queryset(self, model_class, queryset)

	

Allows for specifying a custom QuerySet that changes how load_all will
fetch records for the provided model. This is useful for post-processing the
results from the query, enabling things like adding select_related or
filtering certain data.

Example:

sqs = RelatedSearchQuerySet().filter(content='foo').load_all()
For the Entry model, we want to include related models directly associated
with the Entry to save on DB queries.
sqs = sqs.load_all_queryset(Entry, Entry.objects.all().select_related(depth=1))

This method chains indefinitely, so you can specify QuerySets for as many
models as you wish, one per model. The SearchQuerySet appends on a call to
in_bulk, so be sure that the QuerySet you provide can accommodate this
and that the ids passed to in_bulk will map to the model in question.

If you need to do this frequently and have one QuerySet you’d like to apply
everywhere, you can specify this at the SearchIndex level using the
load_all_queryset method. See SearchIndex API for usage.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

SearchIndex API

	
class SearchIndex(model, backend=None)

	

The SearchIndex class allows the application developer a way to provide data to
the backend in a structured format. Developers familiar with Django’s Form
or Model classes should find the syntax for indexes familiar.

This class is arguably the most important part of integrating Haystack into your
application, as it has a large impact on the quality of the search results and
how easy it is for users to find what they’re looking for. Care and effort
should be put into making your indexes the best they can be.

Quick Start

For the impatient:

import datetime
from haystack.indexes import *
from haystack import site
from myapp.models import Note

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')

 def index_queryset(self):
 "Used when the entire index for model is updated."
 return Note.objects.filter(pub_date__lte=datetime.datetime.now())

site.register(Note, NoteIndex)

Background

Unlike relational databases, most search engines supported by Haystack are
primarily document-based. They focus on a single text blob which they tokenize,
analyze and index. When searching, this field is usually the primary one that
is searched.

Further, the schema used by most engines is the same for all types of data
added, unlike a relational database that has a table schema for each chunk of
data.

It may be helpful to think of your search index as something closer to a
key-value store instead of imagining it in terms of a RDBMS.

Why Create Fields?

Despite being primarily document-driven, most search engines also support the
ability to associate other relevant data with the indexed document. These
attributes can be mapped through the use of fields within Haystack.

Common uses include storing pertinent data information, categorizations of the
document, author information and related data. By adding fields for these pieces
of data, you provide a means to further narrow/filter search terms. This can
be useful from either a UI perspective (a better advanced search form) or from a
developer standpoint (section-dependent search, off-loading certain tasks to
search, et cetera).

Warning

Haystack reserves the following field names for internal use: id,
django_ct, django_id & content. The name & type names
used to be reserved but no longer are.

You can override these field names using the HAYSTACK_ID_FIELD,
HAYSTACK_DJANGO_CT_FIELD & HAYSTACK_DJANGO_ID_FIELD if needed.

Significance Of document=True

Most search engines that were candidates for inclusion in Haystack all had a
central concept of a document that they indexed. These documents form a corpus
within which to primarily search. Because this ideal is so central and most of
Haystack is designed to have pluggable backends, it is important to ensure that
all engines have at least a bare minimum of the data they need to function.

As a result, when creating a SearchIndex, at least one field must be marked
with document=True. This signifies to Haystack that whatever is placed in
this field while indexing is to be the primary text the search engine indexes.
The name of this field can be almost anything, but text is one of the
more common names used.

Stored/Indexed Fields

One shortcoming of the use of search is that you rarely have all or the most
up-to-date information about an object in the index. As a result, when
retrieving search results, you will likely have to access the object in the
database to provide better information.

However, this can also hit the database quite heavily (think
.get(pk=result.id) per object). If your search is popular, this can lead
to a big performance hit. There are two ways to prevent this. The first way is
SearchQuerySet.load_all, which tries to group all similar objects and pull
them though one query instead of many. This still hits the DB and incurs a
performance penalty.

The other option is to leverage stored fields. By default, all fields in
Haystack are both indexed (searchable by the engine) and stored (retained by
the engine and presented in the results). By using a stored field, you can
store commonly used data in such a way that you don’t need to hit the database
when processing the search result to get more information.

For example, one great way to leverage this is to pre-rendering an object’s
search result template DURING indexing. You define an additional field, render
a template with it and it follows the main indexed record into the index. Then,
when that record is pulled when it matches a query, you can simply display the
contents of that field, which avoids the database hit.:

Within myapp/search_indexes.py:

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')
 # Define the additional field.
 rendered = CharField(use_template=True, indexed=False)

Then, inside a template named search/indexes/myapp/note_rendered.txt:

<h2>{{ object.title }}</h2>

<p>{{ object.content }}</p>

And finally, in search/search.html:

...

{% for result in page.object_list %}
 <div class="search_result">
 {{ result.rendered|safe }}
 </div>
{% endfor %}

Keeping The Index Fresh

There are several approaches to keeping the search index in sync with your
database. None are more correct than the others and depending the traffic you
see, the churn rate of your data and what concerns are important to you
(CPU load, how recent, et cetera).

The conventional method is to use SearchIndex in combination with cron
jobs. Running a ./manage.py update_index every couple hours will keep your
data in sync within that timeframe and will handle the updates in a very
efficient batch. Additionally, Whoosh (and to a lesser extent Xapian) behave
better when using this approach.

Another option is to use RealTimeSearchIndex, which uses Django’s signals
to immediately update the index any time a model is saved/deleted. This
yields a much more current search index at the expense of being fairly
inefficient. Solr is the only backend that handles this well under load, and
even then, you should make sure you have the server capacity to spare.

A third option is to develop a custom QueueSearchIndex that, much like
RealTimeSearchIndex, uses Django’s signals to enqueue messages for
updates/deletes. Then writing a management command to consume these messages
in batches, yielding a nice compromise between the previous two options.

Note

Haystack doesn’t ship with a QueueSearchIndex largely because there is
such a diversity of lightweight queuing options and that they tend to
polarize developers. Queuing is outside of Haystack’s goals (provide good,
powerful search) and, as such, is left to the developer.

Additionally, the implementation is relatively trivial in that you simply
extend the same four methods as RealTimeSearchIndex and simply add
messages to the queue of choice.

Advanced Data Preparation

In most cases, using the model_attr parameter on your fields allows you to
easily get data from a Django model to the document in your index, as it handles
both direct attribute access as well as callable functions within your model.

Note

The model_attr keyword argument also can look through relations in
models. So you can do something like model_attr='author__first_name'
to pull just the first name of the author, similar to some lookups used
by Django’s ORM.

However, sometimes, even more control over what gets placed in your index is
needed. To facilitate this, SearchIndex objects have a ‘preparation’ stage
that populates data just before it is indexed. You can hook into this phase in
several ways.

This should be very familiar to developers who have used Django’s forms
before as it loosely follows similar concepts, though the emphasis here is
less on cleansing data from user input and more on making the data friendly
to the search backend.

1. prepare_FOO(self, object)

The most common way to affect a single field’s data is to create a
prepare_FOO method (where FOO is the name of the field). As a parameter
to this method, you will receive the instance that is attempting to be indexed.

Note

This method is analogous to Django’s Form.clean_FOO methods.

To keep with our existing example, one use case might be altering the name
inside the author field to be “firstname lastname <email>”. In this case,
you might write the following code:

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')

 def prepare_author(self, obj):
 return "%s <%s>" % (obj.user.get_full_name(), obj.user.email)

This method should return a single value (or list/tuple/dict) to populate that
fields data upon indexing. Note that this method takes priority over whatever
data may come from the field itself.

Just like Form.clean_FOO, the field’s prepare runs before the
prepare_FOO, allowing you to access self.prepared_data. For example:

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')

 def prepare_author(self, obj):
 # Say we want last name first, the hard way.
 author = u''

 if 'author' in self.prepared_data:
 name_bits = self.prepared_data['author'].split()
 author = "%s, %s" % (name_bits[-1], ' '.join(name_bits[:-1]))

 return author

This method is fully function with model_attr, so if there’s no convenient
way to access the data you want, this is an excellent way to prepare it:

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 categories = MultiValueField()
 pub_date = DateTimeField(model_attr='pub_date')

 def prepare_categories(self, obj):
 # Since we're using a M2M relationship with a complex lookup,
 # we can prepare the list here.
 return [category.id for category in obj.category_set.active().order_by('-created')]

2. prepare(self, object)

Each SearchIndex gets a prepare method, which handles collecting all
the data. This method should return a dictionary that will be the final data
used by the search backend.

Overriding this method is useful if you need to collect more than one piece
of data or need to incorporate additional data that is not well represented
by a single SearchField. An example might look like:

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')

 def prepare(self, object):
 self.prepared_data = super(NoteIndex, self).prepare(object)

 # Add in tags (assuming there's a M2M relationship to Tag on the model).
 # Note that this would NOT get picked up by the automatic
 # schema tools provided by Haystack.
 self.prepared_data['tags'] = [tag.name for tag in object.tags.all()]

 return self.prepared_data

If you choose to use this method, you should make a point to be careful to call
the super() method before altering the data. Without doing so, you may have
an incomplete set of data populating your indexes.

This method has the final say in all data, overriding both what the fields
provide as well as any prepare_FOO methods on the class.

Note

This method is roughly analogous to Django’s Form.full_clean and
Form.clean methods. However, unlike these methods, it is not fired
as the result of trying to access self.prepared_data. It requires
an explicit call.

3. Overriding prepare(self, object) On Individual SearchField Objects

The final way to manipulate your data is to implement a custom SearchField
object and write its prepare method to populate/alter the data any way you
choose. For instance, a (naive) user-created GeoPointField might look
something like:

from haystack.indexes import CharField

class GeoPointField(CharField):
 def __init__(self, **kwargs):
 kwargs['default'] = '0.00-0.00'
 super(GeoPointField, self).__init__(**kwargs)

 def prepare(self, obj):
 return unicode("%s-%s" % (obj.latitude, obj.longitude))

The prepare method simply returns the value to be used for that field. It’s
entirely possible to include data that’s not directly referenced to the object
here, depending on your needs.

Note that this is NOT a recommended approach to storing geographic data in a
search engine (there is no formal suggestion on this as support is usually
non-existent), merely an example of how to extend existing fields.

Note

This method is analagous to Django’s Field.clean methods.

Adding New Fields

If you have an existing SearchIndex and you add a new field to it, Haystack
will add this new data on any updates it sees after that point. However, this
will not populate the existing data you already have.

In order for the data to be picked up, you will need to run ./manage.py
rebuild_index. This will cause all backends to rebuild the existing data
already present in the quickest and most efficient way.

Note

With the Solr backend, you’ll also have to add to the appropriate
schema.xml for your configuration before running the rebuild_index.

Search Index

index_queryset

	
SearchIndex.index_queryset(self)

	

Get the default QuerySet to index when doing a full update.

Subclasses can override this method to avoid indexing certain objects.

read_queryset

	
SearchIndex.read_queryset(self)

	

Get the default QuerySet for read actions.

Subclasses can override this method to work with other managers.
Useful when working with default managers that filter some objects.

prepare

	
SearchIndex.prepare(self, obj)

	

Fetches and adds/alters data before indexing.

get_content_field

	
SearchIndex.get_content_field(self)

	

Returns the field that supplies the primary document to be indexed.

update

	
SearchIndex.update(self)

	

Update the entire index.

update_object

	
SearchIndex.update_object(self, instance, **kwargs)

	

Update the index for a single object. Attached to the class’s
post-save hook.

remove_object

	
SearchIndex.remove_object(self, instance, **kwargs)

	

Remove an object from the index. Attached to the class’s
post-delete hook.

clear

	
SearchIndex.clear(self)

	

Clear the entire index.

reindex

	
SearchIndex.reindex(self)

	

Completely clear the index for this model and rebuild it.

get_updated_field

	
SearchIndex.get_updated_field(self)

	

Get the field name that represents the updated date for the model.

If specified, this is used by the reindex command to filter out results
from the QuerySet, enabling you to reindex only recent records. This
method should either return None (reindex everything always) or a
string of the Model‘s DateField/DateTimeField name.

should_update

	
SearchIndex.should_update(self, instance, **kwargs)

	

Determine if an object should be updated in the index.

It’s useful to override this when an object may save frequently and
cause excessive reindexing. You should check conditions on the instance
and return False if it is not to be indexed.

The kwargs passed along to this method can be the same as the ones passed
by Django when a Model is saved/delete, so it’s possible to check if the object
has been created or not. See django.db.models.signals.post_save for details
on what is passed.

By default, returns True (always reindex).

load_all_queryset

	
SearchIndex.load_all_queryset(self)

	

Provides the ability to override how objects get loaded in conjunction
with RelatedSearchQuerySet.load_all. This is useful for post-processing the
results from the query, enabling things like adding select_related or
filtering certain data.

By default, returns all() on the model’s default manager.

Example:

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')

 def load_all_queryset(self):
 # Pull all objects related to the Note in search results.
 return Note.objects.all().select_related()

When searching, the RelatedSearchQuerySet appends on a call to in_bulk, so be
sure that the QuerySet you provide can accommodate this and that the ids
passed to in_bulk will map to the model in question.

If you need a specific QuerySet in one place, you can specify this at the
RelatedSearchQuerySet level using the load_all_queryset method. See
SearchQuerySet API for usage.

RealTimeSearchIndex

The RealTimeSearchIndex provides all the same functionality as the standard
SearchIndex. However, in addition, it connects to the
post_save/post_delete signals of the model it’s registered with.

This means that anytime a model is saved or deleted, it’s automatically and
immediately updated in the search index, yielding real-time search.

Warning

Not all backends deal well with the kind of document churn that can result
from using the RealTimeSearchIndex. Solr is the only one that handles
it gracefully.

Additionally, this will add more overhead in terms of CPU usage, so you
should be sure to accommodate for this and should have appropriate monitoring
in place.

ModelSearchIndex

The ModelSearchIndex class allows for automatic generation of a
SearchIndex based on the fields of the model assigned to it.

With the exception of the automated introspection, it is a SearchIndex
class, so all notes above pertaining to SearchIndexes apply. As with the
ModelForm class in Django, it employs an inner class called Meta,
which should either contain a pass to include all fields, a fields list
to specify a whitelisted set of fields or excludes to prevent certain fields
from appearing in the class. Unlike ModelForm, you should NOT specify
a model attribute, as that is already handled when registering the class.

In addition, it adds a text field that is the document=True field and
has use_template=True option set, just like the BasicSearchIndex.

Warning

Usage of this class might result in inferior SearchIndex objects, which
can directly affect your search results. Use this to establish basic
functionality and move to custom SearchIndex objects for better control.

At this time, it does not handle related fields.

Quick Start

For the impatient:

import datetime
from haystack.indexes import *
from haystack import site
from myapp.models import Note

All Fields
class AllNoteIndex(ModelSearchIndex):
 class Meta:
 pass

Blacklisted Fields
class LimitedNoteIndex(ModelSearchIndex):
 class Meta:
 excludes = ['user']

Whitelisted Fields
class NoteIndex(ModelSearchIndex):
 class Meta:
 fields = ['user', 'pub_date']

 # Note that regular ``SearchIndex`` methods apply.
 def index_queryset(self):
 "Used when the entire index for model is updated."
 return Note.objects.filter(pub_date__lte=datetime.datetime.now())

site.register(Note, NoteIndex)

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

SearchField API

	
class SearchField

	

The SearchField and it’s subclasses provides a way to declare what data
you’re interested in indexing. They are used with SearchIndexes, much like
forms.*Field are used within forms or models.*Field within models.

They provide both the means for storing data in the index, as well as preparing
the data before it’s placed in the index. Haystack uses all fields from all
SearchIndex classes to determine what the engine’s index schema ought to
look like.

In practice, you’ll likely never actually use the base SearchField, as the
subclasses are much better at handling real data.

Subclasses

Included with Haystack are the following field types:

	BooleanField

	CharField

	DateField

	DateTimeField

	DecimalField

	EdgeNgramField

	FloatField

	IntegerField

	MultiValueField

	NgramField

And equivalent faceted versions:

	FacetBooleanField

	FacetCharField

	FacetDateField

	FacetDateTimeField

	FacetDecimalField

	FacetFloatField

	FacetIntegerField

	FacetMultiValueField

Note

There is no faceted variant of the n-gram fields. Because of how the engine
generates n-grams, faceting on these field types (NgramField &
EdgeNgram) would make very little sense.

Usage

While SearchField objects can be used on their own, they’re generally used
within a SearchIndex. You use them in a declarative manner, just like
fields in django.forms.Form or django.db.models.Model objects. For
example:

from haystack.indexes import *

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')

This will hook up those fields with the index and, when updating a Model
object, pull the relevant data out and prepare it for storage in the index.

Field Options

default

	
SearchField.default

	

Provides a means for specifying a fallback value in the event that no data is
found for the field. Can be either a value or a callable.

document

	
SearchField.document

	

A boolean flag that indicates which of the fields in the SearchIndex ought
to be the primary field for searching within. Default is False.

Note

Only one field can be marked as the document=True field, so you should
standardize this name and the format of the field between all of your
SearchIndex classes.

indexed

	
SearchField.indexed

	

A boolean flag for indicating whether or not the the data from this field will
be searchable within the index. Default is True.

The companion of this option is stored.

index_fieldname

	
SearchField.index_fieldname

	

The index_fieldname option allows you to force the name of the field in the
index. This does not change how Haystack refers to the field. This is useful
when using Solr’s dynamic attributes or when integrating with other external
software.

Default is variable name of the field within the SearchIndex.

model_attr

	
SearchField.model_attr

	

The model_attr option is a shortcut for preparing data. Rather than having
to manually fetch data out of a Model, model_attr allows you to specify
a string that will automatically pull data out for you. For example:

Automatically looks within the model and populates the field with
the ``last_name`` attribute.
author = CharField(model_attr='last_name')

It also handles callables:

On a ``User`` object, pulls the full name as pieced together by the
``get_full_name`` method.
author = CharField(model_attr='get_full_name')

And can look through relations:

Pulls the ``bio`` field from a ``UserProfile`` object that has a
``OneToOneField`` relationship to a ``User`` object.
biography = CharField(model_attr='user__profile__bio')

null

	
SearchField.null

	

A boolean flag for indicating whether or not it’s permissible for the field
not to contain any data. Default is False.

Note

Unlike Django’s database layer, which injects a NULL into the database
when a field is marked nullable, null=True will actually exclude that
field from being included with the document. This more efficient for the
search engine to deal with.

stored

	
SearchField.stored

	

A boolean flag for indicating whether or not the data from this field will
be stored within the index. Default is True.

This is useful for pulling data out of the index along with the search result
in order to save on hits to the database.

The companion of this option is indexed.

template_name

	
SearchField.template_name

	

Allows you to override the name of the template to use when preparing data. By
default, the data templates for fields are located within your TEMPLATE_DIRS
under a path like search/indexes/{app_label}/{model_name}_{field_name}.txt.
This option lets you override that path (though still within TEMPLATE_DIRS).

Example:

bio = CharField(use_template=True, template_name='myapp/data/bio.txt')

You can also provide a list of templates, as loader.select_template is used
under the hood.

Example:

bio = CharField(use_template=True, template_name=['myapp/data/bio.txt', 'myapp/bio.txt', 'bio.txt'])

use_template

	
SearchField.use_template

	

A boolean flag for indicating whether or not a field should prepare its data
via a data template or not. Default is False.

Data templates are extremely useful, as they let you easily tie together
different parts of the Model (and potentially related models). This leads
to better search results with very little effort.

Method Reference

__init__

	
SearchField.__init__(self, model_attr=None, use_template=False, template_name=None, document=False, indexed=True, stored=True, faceted=False, default=NOT_PROVIDED, null=False, index_fieldname=None, facet_class=None, boost=1.0, weight=None)

	

Instantiates a fresh SearchField instance.

has_default

	
SearchField.has_default(self)

	

Returns a boolean of whether this field has a default value.

prepare

	
SearchField.prepare(self, obj)

	

Takes data from the provided object and prepares it for storage in the
index.

prepare_template

	
SearchField.prepare_template(self, obj)

	

Flattens an object for indexing.

This loads a template
(search/indexes/{app_label}/{model_name}_{field_name}.txt) and
returns the result of rendering that template. object will be in
its context.

convert

	
SearchField.convert(self, value)

	

Handles conversion between the data found and the type of the field.

Extending classes should override this method and provide correct
data coercion.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

SearchResult API

	
class SearchResult(app_label, model_name, pk, score, searchsite=None, **kwargs)

	

The SearchResult class provides structure to the results that come back from
the search index. These objects are what a SearchQuerySet will return when
evaluated.

Attribute Reference

The class exposes the following useful attributes/properties:

	app_label - The application the model is attached to.

	model_name - The model’s name.

	pk - The primary key of the model.

	score - The score provided by the search engine.

	object - The actual model instance (lazy loaded).

	model - The model class.

	verbose_name - A prettier version of the model’s class name for display.

	searchsite - The SearchSite the record is associated with.

Method Reference

content_type

	
SearchResult.content_type(self)

	

Returns the content type for the result’s model instance.

get_additional_fields

	
SearchResult.get_additional_fields(self)

	

Returns a dictionary of all of the fields from the raw result.

Useful for serializing results. Only returns what was seen from the
search engine, so it may have extra fields Haystack’s indexes aren’t
aware of.

get_stored_fields

	
SearchResult.get_stored_fields(self)

	

Returns a dictionary of all of the stored fields from the SearchIndex.

Useful for serializing results. Only returns the fields Haystack’s
indexes are aware of as being ‘stored’.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

SearchSite API

	
class SearchSite

	

The SearchSite provides a way to collect the SearchIndexes that are
relevant to the current site, much like ModelAdmins in the admin app.

This allows you to register indexes on models you don’t control (reusable
apps, django.contrib, etc.) as well as customize on a per-site basis what
indexes should be available (different indexes for different sites, same
codebase).

A SearchSite instance(s) should be configured within a configuration file, which gets specified in your settings file as HAYSTACK_SITECONF. An example of this setting might be myproject.search_sites.

Warning

For a long time before the 1.0 release of Haystack, the convention was to
place this configuration within your URLconf. This is no longer recommended
as it can cause issues in certain production setups (Django 1.1+/mod_wsgi
for example).

Autodiscovery

Since the common use case is to simply grab everything that is indexed for
search, there is an autodiscovery mechanism which will pull in and register
all indexes it finds within your project. To enable this, place the following
code inside the file you specified as your HAYSTACK_SITECONF:

import haystack
haystack.autodiscover()

This will fully flesh-out the default SearchSite (at
haystack.sites.site) for use. Since this site is used by default throughout
Haystack, very little (if any) additional configuration will be needed.

Usage

If you need to narrow the indexes that get registered, you will need to
manipulate a SearchSite. There are two ways to go about this, via either
register or unregister.

If you want most of the indexes but want to forgo a specific one(s), you can
setup the main site via autodiscover then simply unregister the one(s)
you don’t want.:

import haystack
haystack.autodiscover()

Unregister the Rating index.
from ratings.models import Rating
haystack.sites.site.unregister(Rating)

Alternatively, you can manually register only the indexes you want.:

from haystack import site
from ratings.models import Rating
from ratings.search_indexes import RatingIndex

site.register(Rating, RatingIndex)

Method Reference

register

	
SearchSite.register(self, model, index_class=None)

	

Registers a model with the site.

The model should be a Model class, not instances.

If no custom index is provided, a generic SearchIndex will be applied
to the model.

unregister

	
SearchSite.unregister(self, model)

	

Unregisters a model’s corresponding index from the site.

get_index

	
SearchSite.get_index(self, model)

	

Provides the index that’s registered for a particular model.

get_indexes

	
SearchSite.get_indexes(self)

	

Provides a dictionary of all indexes that’re being used.

get_indexed_models

	
SearchSite.get_indexed_models(self)

	

Provides a list of all models being indexed.

all_searchfields

	
SearchSite.all_searchfields(self)

	

Builds a dictionary of all fields appearing in any of the SearchIndex
instances registered with a site.

This is useful when building a schema for an engine. A dictionary is
returned, with each key being a fieldname (or index_fieldname) and the
value being the SearchField class assigned to it.

update_object

	
SearchSite.update_object(self, instance)

	

Updates the instance’s data in the index.

A shortcut for updating on the instance’s index. Errors from get_index
and update_object will be allowed to propogate.

remove_object

	
SearchSite.remove_object(self, instance)

	

Removes the instance’s data in the index.

A shortcut for removing on the instance’s index. Errors from get_index
and remove_object will be allowed to propogate.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

SearchQuery API

	
class SearchQuery(backend=None)

	

The SearchQuery class acts as an intermediary between SearchQuerySet‘s
abstraction and SearchBackend‘s actual search. Given the metadata provided
by SearchQuerySet, SearchQuery build the actual query and interacts
with the SearchBackend on SearchQuerySet‘s behalf.

This class must be at least partially implemented on a per-backend basis, as portions
are highly specific to the backend. It usually is bundled with the accompanying
SearchBackend.

Most people will NOT have to use this class directly. SearchQuerySet
handles all interactions with SearchQuery objects and provides a nicer
interface to work with.

Should you need advanced/custom behavior, you can supply your version of
SearchQuery that overrides/extends the class in the manner you see fit.
SearchQuerySet objects take a kwarg parameter query where you can pass
in your class.

SQ Objects

For expressing more complex queries, especially involving AND/OR/NOT in
different combinations, you should use SQ objects. Like
django.db.models.Q objects, SQ objects can be passed to
SearchQuerySet.filter and use the familiar unary operators (&, | and
~) to generate complex parts of the query.

Warning

Any data you pass to SQ objects is passed along unescaped. If
you don’t trust the data you’re passing along, you should use
the clean method on your SearchQuery to sanitize the data.

Example:

from haystack.query import SQ

We want "title: Foo AND (tags:bar OR tags:moof)"
sqs = SearchQuerySet().filter(title='Foo').filter(SQ(tags='bar') | SQ(tags='moof'))

To clean user-provided data:
sqs = SearchQuerySet()
clean_query = sqs.query.clean(user_query)
sqs = sqs.filter(SQ(title=clean_query) | SQ(tags=clean_query))

Internally, the SearchQuery object maintains a tree of SQ objects. Each
SQ object supports what field it looks up against, what kind of lookup (i.e.
the __ filters), what value it’s looking for, if it’s a AND/OR/NOT and
tracks any children it may have. The SearchQuery.build_query method starts
with the root of the tree, building part of the final query at each node until
the full final query is ready for the SearchBackend.

Backend-Specific Methods

When implementing a new backend, the following methods will need to be created:

build_query_fragment

	
SearchQuery.build_query_fragment(self, field, filter_type, value)

	

Generates a query fragment from a field, filter type and a value.

Must be implemented in backends as this will be highly backend specific.

Inheritable Methods

The following methods have a complete implementation in the base class and
can largely be used unchanged.

build_query

	
SearchQuery.build_query(self)

	

Interprets the collected query metadata and builds the final query to
be sent to the backend.

build_params

	
SearchQuery.build_params(self, spelling_query=None)

	

Generates a list of params to use when searching.

clean

	
SearchQuery.clean(self, query_fragment)

	

Provides a mechanism for sanitizing user input before presenting the
value to the backend.

A basic (override-able) implementation is provided.

run

	
SearchQuery.run(self, spelling_query=None, **kwargs)

	

Builds and executes the query. Returns a list of search results.

Optionally passes along an alternate query for spelling suggestions.

Optionally passes along more kwargs for controlling the search query.

run_mlt

	
SearchQuery.run_mlt(self, **kwargs)

	

Executes the More Like This. Returns a list of search results similar
to the provided document (and optionally query).

run_raw

	
SearchQuery.run_raw(self, **kwargs)

	

Executes a raw query. Returns a list of search results.

get_count

	
SearchQuery.get_count(self)

	

Returns the number of results the backend found for the query.

If the query has not been run, this will execute the query and store
the results.

get_results

	
SearchQuery.get_results(self, **kwargs)

	

Returns the results received from the backend.

If the query has not been run, this will execute the query and store
the results.

get_facet_counts

	
SearchQuery.get_facet_counts(self)

	

Returns the results received from the backend.

If the query has not been run, this will execute the query and store
the results.

boost_fragment

	
SearchQuery.boost_fragment(self, boost_word, boost_value)

	

Generates query fragment for boosting a single word/value pair.

matching_all_fragment

	
SearchQuery.matching_all_fragment(self)

	

Generates the query that matches all documents.

add_filter

	
SearchQuery.add_filter(self, expression, value, use_not=False, use_or=False)

	

Narrows the search by requiring certain conditions.

add_order_by

	
SearchQuery.add_order_by(self, field)

	

Orders the search result by a field.

clear_order_by

	
SearchQuery.clear_order_by(self)

	

Clears out all ordering that has been already added, reverting the
query to relevancy.

add_model

	
SearchQuery.add_model(self, model)

	

Restricts the query requiring matches in the given model.

This builds upon previous additions, so you can limit to multiple models
by chaining this method several times.

set_limits

	
SearchQuery.set_limits(self, low=None, high=None)

	

Restricts the query by altering either the start, end or both offsets.

clear_limits

	
SearchQuery.clear_limits(self)

	

Clears any existing limits.

add_boost

	
SearchQuery.add_boost(self, term, boost_value)

	

Adds a boosted term and the amount to boost it to the query.

raw_search

	
SearchQuery.raw_search(self, query_string, **kwargs)

	

Runs a raw query (no parsing) against the backend.

This method causes the SearchQuery to ignore the standard query
generating facilities, running only what was provided instead.

Note that any kwargs passed along will override anything provided
to the rest of the SearchQuerySet.

more_like_this

	
SearchQuery.more_like_this(self, model_instance)

	

Allows backends with support for “More Like This” to return results
similar to the provided instance.

add_highlight

	
SearchQuery.add_highlight(self)

	

Adds highlighting to the search results.

add_field_facet

	
SearchQuery.add_field_facet(self, field)

	

Adds a regular facet on a field.

add_date_facet

	
SearchQuery.add_date_facet(self, field, start_date, end_date, gap_by, gap_amount)

	

Adds a date-based facet on a field.

add_query_facet

	
SearchQuery.add_query_facet(self, field, query)

	

Adds a query facet on a field.

add_narrow_query

	
SearchQuery.add_narrow_query(self, query)

	

Narrows a search to a subset of all documents per the query.

Generally used in conjunction with faceting.

set_result_class

	
SearchQuery.set_result_class(self, klass)

	

Sets the result class to use for results.

Overrides any previous usages. If None is provided, Haystack will
revert back to the default SearchResult object.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

SearchBackend API

	
class SearchBackend(site=None)

	

The SearchBackend class handles interaction directly with the backend. The
search query it performs is usually fed to it from a SearchQuery class that
has been built for that backend.

This class must be at least partially implemented on a per-backend basis and
is usually accompanied by a SearchQuery class within the same module.

Unless you are writing a new backend, it is unlikely you need to directly
access this class.

Method Reference

update

	
SearchBackend.update(self, index, iterable)

	

Updates the backend when given a SearchIndex and a collection of
documents.

This method MUST be implemented by each backend, as it will be highly
specific to each one.

remove

	
SearchBackend.remove(self, obj_or_string)

	

Removes a document/object from the backend. Can be either a model
instance or the identifier (i.e. app_name.model_name.id) in the
event the object no longer exists.

This method MUST be implemented by each backend, as it will be highly
specific to each one.

clear

	
SearchBackend.clear(self, models=[])

	

Clears the backend of all documents/objects for a collection of models.

This method MUST be implemented by each backend, as it will be highly
specific to each one.

search

	
SearchBackend.search(self, query_string, sort_by=None, start_offset=0, end_offset=None, fields='', highlight=False, facets=None, date_facets=None, query_facets=None, narrow_queries=None, spelling_query=None, limit_to_registered_models=None, result_class=None, **kwargs)

	

Takes a query to search on and returns dictionary.

The query should be a string that is appropriate syntax for the backend.

The returned dictionary should contain the keys ‘results’ and ‘hits’.
The ‘results’ value should be an iterable of populated SearchResult
objects. The ‘hits’ should be an integer count of the number of matched
results the search backend found.

This method MUST be implemented by each backend, as it will be highly
specific to each one.

prep_value

	
SearchBackend.prep_value(self, value)

	

Hook to give the backend a chance to prep an attribute value before
sending it to the search engine.

By default, just force it to unicode.

more_like_this

	
SearchBackend.more_like_this(self, model_instance, additional_query_string=None, result_class=None)

	

Takes a model object and returns results the backend thinks are similar.

This method MUST be implemented by each backend, as it will be highly
specific to each one.

build_schema

	
SearchBackend.build_schema(self, fields)

	

Takes a dictionary of fields and returns schema information.

This method MUST be implemented by each backend, as it will be highly
specific to each one.

build_registered_models_list

	
SearchBackend.build_registered_models_list(self)

	

Builds a list of registered models for searching.

The search method should use this and the django_ct field to
narrow the results (unless the user indicates not to). This helps ignore
any results that are not currently registered models and ensures
consistent caching.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Architecture Overview

SearchQuerySet

One main implementation.

	Standard API that loosely follows QuerySet

	Handles most queries

	Allows for custom “parsing”/building through API

	Dispatches to SearchQuery for actual query

	Handles automatically creating a query

	Allows for raw queries to be passed straight to backend.

SearchQuery

Implemented per-backend.

	Method for building the query out of the structured data.

	Method for cleaning a string of reserved characters used by the backend.

Main class provides:

	Methods to add filters/models/order-by/boost/limits to the search.

	Method to perform a raw search.

	Method to get the number of hits.

	Method to return the results provided by the backend (likely not a full list).

SearchBackend

Implemented per-backend.

	Connects to search engine

	Method for saving new docs to index

	Method for removing docs from index

	Method for performing the actual query

SearchSite

One main implementation.

	Standard API that loosely follows django.contrib.admin.sites.AdminSite

	Handles registering/unregistering models to search on a per-site basis.

	Provides a means of adding custom indexes to a model, like ModelAdmins.

SearchIndex

Implemented per-model you wish to index.

	Handles generating the document to be indexed.

	Populates additional fields to accompany the document.

	Provides a way to limit what types of objects get indexed.

	Provides a way to index the document(s).

	Provides a way to remove the document(s).

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Backend Support

Supported Backends

	Solr [http://lucene.apache.org/solr/]

	Whoosh [http://whoosh.ca/]

	Xapian [http://xapian.org/]

Backend Capabilities

Solr

Complete & included with Haystack.

	Full SearchQuerySet support

	Automatic query building

	“More Like This” functionality

	Term Boosting

	Faceting

	Stored (non-indexed) fields

	Highlighting

	Requires: pysolr (2.0.13+) & Solr 1.3+

Whoosh

Complete & included with Haystack.

	Full SearchQuerySet support

	Automatic query building

	Term Boosting

	Stored (non-indexed) fields

	Highlighting

	Requires: whoosh (1.1.1+)

Xapian

Complete & available as a third-party download.

	Full SearchQuerySet support

	Automatic query building

	“More Like This” functionality

	Term Boosting

	Faceting

	Stored (non-indexed) fields

	Highlighting

	Requires: Xapian 1.0.5+ & python-xapian 1.0.5+

	Backend can be downloaded here: xapian-haystack [http://github.com/notanumber/xapian-haystack/]

	Backend
	SearchQuerySet Support
	Auto Query Building
	More Like This
	Term Boost
	Faceting
	Stored Fields
	Highlighting

	Solr
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Whoosh
	Yes
	Yes
	No
	Yes
	No
	Yes
	Yes

	Xapian
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes (plugin)

Wishlist

The following are search backends that would be nice to have in Haystack but are
licensed in a way that prevents them from being officially bundled. If the
community expresses interest in any of these, there may be future development.

	Sphinx [http://www.sphinxsearch.com/]

	Hyper Estraier [http://hyperestraier.sourceforge.net/]

Sphinx

	Full SearchQuerySet support

	Automatic query building

	Term Boosting

	Stored (non-indexed) fields

	Highlighting

	Requires: sphinxapi.py (Comes with Sphinx)

Hyper Estraier

	Full SearchQuerySet support

	Automatic query building

	“More Like This” functionality

	Highlighting

	Requires: SWIG bindings

	Backend
	SearchQuerySet Support
	Auto Query Building
	More Like This
	Term Boost
	Faceting
	Stored Fields
	Highlighting

	Sphinx
	Yes
	Yes
	No
	Yes
	No
	Yes
	Yes

	Hyper Estraier
	Yes
	Yes
	Yes
	No
	No
	No
	Yes (plugin)

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Haystack Settings

As a way to extend/change the default behavior within Haystack, there are
several settings you can alter within your settings.py. This is a
comprehensive list of the settings Haystack recognizes.

HAYSTACK_DEFAULT_OPERATOR

Optional

This setting controls what the default behavior for chaining SearchQuerySet
filters together is.

Valid options are:

HAYSTACK_DEFAULT_OPERATOR = 'AND'
HAYSTACK_DEFAULT_OPERATOR = 'OR'

Defaults to AND.

HAYSTACK_SITECONF

Required

This setting controls what module should be loaded to setup your SearchSite.
The module should be on your PYTHONPATH and should contain only the calls
necessary to setup Haystack to your needs.

The convention is to name this file search_sites and place it in the same
directory as your settings.py and/or urls.py.

Valid options are:

HAYSTACK_SITECONF = 'myproject.search_sites'

No default is provided.

HAYSTACK_SEARCH_ENGINE

Required

This setting controls which backend should be used. You should provide the
short name (e.g. solr), not the full filename of the backend (e.g.
solr_backend.py).

Valid options are:

HAYSTACK_SEARCH_ENGINE = 'solr'
HAYSTACK_SEARCH_ENGINE = 'whoosh'
HAYSTACK_SEARCH_ENGINE = 'xapian'
HAYSTACK_SEARCH_ENGINE = 'simple'
HAYSTACK_SEARCH_ENGINE = 'dummy'

No default is provided.

HAYSTACK_SEARCH_RESULTS_PER_PAGE

Optional

This setting controls how many results are shown per page when using the
included SearchView and its subclasses.

An example:

HAYSTACK_SEARCH_RESULTS_PER_PAGE = 50

Defaults to 20.

HAYSTACK_INCLUDE_SPELLING

Optional

This setting controls if spelling suggestions should be included in search
results. This can potentially have performance implications so it is disabled
by default.

An example:

HAYSTACK_INCLUDE_SPELLING = True

Works for the solr, xapian and whoosh backends.

HAYSTACK_SOLR_URL

Required when using the ``solr`` backend

This setting controls what URL the solr backend should be connecting to.
This depends on how the user sets up their Solr daemon.

Examples:

HAYSTACK_SOLR_URL = 'http://localhost:9000/solr/test'
HAYSTACK_SOLR_URL = 'http://solr.mydomain.com/solr/mysite'

No default is provided.

HAYSTACK_SOLR_TIMEOUT

Optional when using the ``solr`` backend

This setting controls the time to wait for a response from Solr in seconds.

Examples:

HAYSTACK_SOLR_TIMEOUT = 30

The default is 10 seconds.

HAYSTACK_WHOOSH_PATH

Required when using the ``whoosh`` backend

This setting controls where on the filesystem the Whoosh indexes will be stored.
The user must have the appropriate permissions for reading and writing to this
directory.

Note

This should be it’s own directory, with nothing else in it. Pointing this
at a directory (like your project root) could cause you to lose data when
clearing the index.

Any trailing slashes should be left off.

Finally, you should ensure that this directory is not located within the
document root of your site and that you take appropriate security precautions.

An example:

HAYSTACK_WHOOSH_PATH = '/home/mysite/whoosh_index'

No default is provided.

HAYSTACK_WHOOSH_STORAGE

Optional

This setting controls whether Whoosh uses either the standard file-based
storage or the RAM-based storage.

Note that the RAM-based storage is not permanent and disappears when the
process is ended. This is mostly useful for testing.

Examples:

HAYSTACK_WHOOSH_STORAGE = 'file'
HAYSTACK_WHOOSH_STORAGE = 'ram'

The default is ‘file’.

HAYSTACK_WHOOSH_POST_LIMIT

Optional

This setting controls how large of a document Whoosh will accept when writing.

Examples:

HAYSTACK_WHOOSH_POST_LIMIT = 256 * 1024 * 1024

The default is 128 * 1024 * 1024.

HAYSTACK_XAPIAN_PATH

Required when using the ``xapian`` backend

This setting controls where on the filesystem the Xapian indexes will be stored.
The user must have the appropriate permissions for reading and writing to this
directory.

Note

This should be it’s own directory, with nothing else in it. Pointing this
at a directory (like your project root) could cause you to lose data when
clearing the index.

Any trailing slashes should be left off.

Finally, you should ensure that this directory is not located within the
document root of your site and that you take appropriate security precautions.

An example:

HAYSTACK_XAPIAN_PATH = '/home/mysite/xapian_index'

No default is provided.

HAYSTACK_BATCH_SIZE

Optional

This setting controls the number of model instances loaded at a time while
reindexing. This affects how often the search indexes must merge (an intensive
operation).

An example:

HAYSTACK_BATCH_SIZE = 100

The default is 1000 models per commit.

HAYSTACK_CUSTOM_HIGHLIGHTER

Optional

This setting allows you to specify your own custom Highlighter
implementation for use with the {% highlight %} template tag. It should be
the full path to the class.

An example:

HAYSTACK_CUSTOM_HIGHLIGHTER = 'myapp.utils.BorkHighlighter'

No default is provided. Haystack automatically falls back to the default
implementation.

HAYSTACK_ENABLE_REGISTRATIONS

Optional

This setting allows you to control whether or not Haystack will manage it’s own
registrations at start-up. It should be a boolean.

An example:

HAYSTACK_ENABLE_REGISTRATIONS = False

Default is True.

Warning

Setting this to False prevents Haystack from doing any imports, which
means that no SearchIndex classes will get registered, no signals will
get hooked up and any use of SearchQuerySet without further work will
yield no results. You can manually import your SearchIndex classes in
other files (like your views or elsewhere). In short, Haystack will still
be available but essentially in an un-initialized state.

You should ONLY use this setting if you’re using another third-party
application that causes tracebacks/import errors when used in conjunction
with Haystack.

HAYSTACK_ITERATOR_LOAD_PER_QUERY

Optional

This setting controls the number of results that are pulled at once when
iterating through a SearchQuerySet. If you generally consume large portions
at a time, you can bump this up for better performance.

Note

This is not used in the case of a slice on a SearchQuerySet, which
already overrides the number of results pulled at once.

An example:

HAYSTACK_ITERATOR_LOAD_PER_QUERY = 100

The default is 10 results at a time.

HAYSTACK_LIMIT_TO_REGISTERED_MODELS

Optional

This setting allows you to control whether or not Haystack will limit the
search results seen to just the models registered. It should be a boolean.

If your search index is never used for anything other than the models
registered with Haystack, you can turn this off and get a small to moderate
performance boost.

An example:

HAYSTACK_LIMIT_TO_REGISTERED_MODELS = False

Default is True.

HAYSTACK_SILENTLY_FAIL

Optional

This setting allows you to control whether or not Haystack will silently
fail when querying the index or not. On by default, this allows big
reindexes that simply lost a connection to mostly succeed, given the
time involved.

An example:

HAYSTACK_SILENTLY_FAIL = False

Default is True.

HAYSTACK_ID_FIELD

Optional

This setting allows you to control what the unique field name used internally
by Haystack is called. Rarely needed unless your field names collide with
Haystack’s defaults.

An example:

HAYSTACK_ID_FIELD = 'my_id'

Default is id.

HAYSTACK_DJANGO_CT_FIELD

Optional

This setting allows you to control what the content type field name used
internally by Haystack is called. Rarely needed unless your field names
collide with Haystack’s defaults.

An example:

HAYSTACK_DJANGO_CT_FIELD = 'my_django_ct'

Default is django_ct.

HAYSTACK_DJANGO_ID_FIELD

Optional

This setting allows you to control what the primary key field name used
internally by Haystack is called. Rarely needed unless your field names
collide with Haystack’s defaults.

An example:

HAYSTACK_DJANGO_ID_FIELD = 'my_django_id'

Default is django_id.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 previous |

 	Haystack 1.2.7 documentation

Utilities

Included here are some of the general use bits included with Haystack.

get_identifier

	
get_identifier(obj_or_string)

	

Get an unique identifier for the object or a string representing the
object.

If not overridden, uses <app_label>.<object_name>.<pk>.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Running Tests

Core Haystack Functionality

In order to test Haystack with the minimum amount of unnecessary mocking and to
stay as close to real-world use as possible, Haystack ships with a test
app (called core) within the django-haystack/tests directory.

In the event you need to run Haystack‘s tests (such as testing
bugfixes/modifications), here are the steps to getting them running:

cd django-haystack/tests
export PYTHONPATH=`pwd`
django-admin.py test core --settings=settings

Haystack is maintained with all tests passing at all times, so if you
receive any errors during testing, please check your setup and file a report if
the errors persist.

Backends

If you want to test a backend, the steps are the same with the exception of
the settings module and the app to test. To test an engine, use the
engine_settings module within the tests directory, substituting the
engine for the name of the proper backend. You’ll also need to specify the
app for that engine. For instance, to run the Solr backend’s tests:

cd django-haystack/tests
export PYTHONPATH=`pwd`
django-admin.py test solr_tests --settings=solr_settings

Or, to run the Whoosh backend’s tests:

cd django-haystack/tests
export PYTHONPATH=`pwd`
django-admin.py test whoosh_tests --settings=whoosh_settings

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Creating New Backends

The process should be fairly simple.

	Create new backend file. Name is important.

	Two classes inside.
	SearchBackend (inherit from haystack.backends.BaseSearchBackend)

	SearchQuery (inherit from haystack.backends.BaseSearchQuery)

SearchBackend

Responsible for the actual connection and low-level details of interacting with
the backend.

	Connects to search engine

	Method for saving new docs to index

	Method for removing docs from index

	Method for performing the actual query

SearchQuery

Responsible for taking structured data about the query and converting it into a
backend appropriate format.

	Method for creating the backend specific query - build_query.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Getting Started with Haystack

Search is a topic of ever increasing importance. Users increasing rely on search
to separate signal from noise and find what they’re looking for quickly. In
addition, search can provide insight into what things are popular (many
searches), what things are difficult to find on the site and ways you can
improve the site better.

To this end, Haystack tries to make integrating custom search as easy as
possible while being flexible/powerful enough to handle more advanced use cases.

Haystack is a reusable app (that is, it relies only on it’s own code and focuses
on providing just search) that plays nicely with both apps you control as well as
third-party apps (such as django.contrib.*) without having to modify the
sources.

Haystack also does pluggable backends (much like Django’s database
layer), so virtually all of the code you write ought to be portable between
which ever search engine you choose.

Note

If you hit a stumbling block, there is both a mailing list [http://groups.google.com/group/django-haystack] and
#haystack on irc.freenode.net to get help.

This tutorial assumes that you have a basic familiarity with the various major
parts of Django (models/forms/views/settings/URLconfs) and tailored to the
typical use case. There are shortcuts available as well as hooks for much
more advanced setups, but those will not be covered here.

For example purposes, we’ll be adding search functionality to a simple
note-taking application. Here is myapp/models.py:

from django.db import models
from django.contrib.auth.models import User

class Note(models.Model):
 user = models.ForeignKey(User)
 pub_date = models.DateTimeField()
 title = models.CharField(max_length=200)
 body = models.TextField()

 def __unicode__(self):
 return self.title

Finally, before starting with Haystack, you will want to choose a search
backend to get started. There is a quick-start guide to
Installing Search Engines, though you may want to defer to each engine’s
official instructions.

Configuration

Add Haystack To INSTALLED_APPS

As with most Django applications, you should add Haystack to the
INSTALLED_APPS within your settings file (usually settings.py).

Example:

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',

 # Added.
 'haystack',

 # Then your usual apps...
 'blog',
]

Modify Your settings.py

Within your settings.py, you’ll need to add a setting to indicate where your
site configuration file will live and which backend to use, as well as other
settings for that backend.

HAYSTACK_SITECONF is a required settings and should provide a Python import
path to a file where you keep your SearchSite configurations in. This will
be explained in the next step, but for now, add the following settings
(substituting your correct information) and create an empty file at that path:

HAYSTACK_SITECONF = 'myproject.search_sites'

HAYSTACK_SEARCH_ENGINE is a required setting and should be one of the
following:

	solr

	whoosh

	xapian (if you installed xapian-haystack)

	simple

	dummy

Example:

HAYSTACK_SEARCH_ENGINE = 'whoosh'

Additionally, backends may require additional information.

Solr

Requires setting HAYSTACK_SOLR_URL to be the URL where your Solr is running at.

Example:

HAYSTACK_SOLR_URL = 'http://127.0.0.1:8983/solr'
...or for multicore...
HAYSTACK_SOLR_URL = 'http://127.0.0.1:8983/solr/mysite'

Whoosh

Requires setting HAYSTACK_WHOOSH_PATH to the place on your filesystem where the
Whoosh index should be located. Standard warnings about permissions and keeping
it out of a place your webserver may serve documents out of apply.

Example:

HAYSTACK_WHOOSH_PATH = '/home/whoosh/mysite_index'

Xapian

First, install the Xapian backend (via
http://github.com/notanumber/xapian-haystack/tree/master) per the instructions
included with the backend.

Requires setting HAYSTACK_XAPIAN_PATH to the place on your filesystem where the
Xapian index should be located. Standard warnings about permissions and keeping
it out of a place your webserver may serve documents out of apply.

Example:

HAYSTACK_XAPIAN_PATH = '/home/xapian/mysite_index'

Simple

The simple backend using very basic matching via the database itself. It’s
not recommended for production use but is more useful than the dummy backend
in that it will return results. No extra settings are needed.

Create A SearchSite

Within the empty file you created corresponding to your HAYSTACK_SITECONF,
add the following code:

import haystack
haystack.autodiscover()

This will create a default SearchSite instance, search through all of your
INSTALLED_APPS for search_indexes.py and register all SearchIndex
classes with the default SearchSite.

Note

You can configure more than one SearchSite as well as manually
registering/unregistering indexes with them. However, these are rarely done
in practice and are available for advanced use.

Handling Data

Creating SearchIndexes

SearchIndex objects are the way Haystack determines what data should be
placed in the search index and handles the flow of data in. You can think of
them as being similar to Django Models or Forms in that they are
field-based and manipulate/store data.

You generally create a unique SearchIndex for each type of Model you
wish to index, though you can reuse the same SearchIndex between different
models if you take care in doing so and your field names are very standardized.

To use a SearchIndex, you need to register it with the Model it applies
to and the SearchSite it ought to belong to. Registering indexes in Haystack
is very similar to the way you register models and ModelAdmin classes with
the Django admin site [http://docs.djangoproject.com/en/dev/ref/contrib/admin/].

To build a SearchIndex, all that’s necessary is to subclass SearchIndex,
define the fields you want to store data with and register it.

We’ll create the following NoteIndex to correspond to our Note
model. This code generally goes in a search_indexes.py file within the app
it applies to, though that is not required. This allows
haystack.autodiscover() to automatically pick it up. The
NoteIndex should look like:

import datetime
from haystack.indexes import *
from haystack import site
from myapp.models import Note

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')

 def index_queryset(self):
 """Used when the entire index for model is updated."""
 return Note.objects.filter(pub_date__lte=datetime.datetime.now())

site.register(Note, NoteIndex)

Every SearchIndex requires there be one (and only one) field with
document=True. This indicates to both Haystack and the search engine about
which field is the primary field for searching within.

Warning

When you choose a document=True field, it should be consistently named
across all of your SearchIndex classes to avoid confusing the backend.
The convention is to name this field text.

There is nothing special about the text field name used in all of the
examples. It could be anything; you could call it pink_polka_dot and
it won’t matter. It’s simply a convention to call it text.

Additionally, we’re providing use_template=True on the text field. This
allows us to use a data template (rather than error prone concatenation) to
build the document the search engine will use in searching. You’ll need to
create a new template inside your template directory called
search/indexes/myapp/note_text.txt and place the following inside:

{{ object.title }}
{{ object.user.get_full_name }}
{{ object.body }}

In addition, we added several other fields (author and pub_date). These
are useful when you want to provide additional filtering options. Haystack comes
with a variety of SearchField classes to handle most types of data.

A common theme is to allow admin users to add future content but have it not
display on the site until that future date is reached. We specify a custom
index_queryset method to prevent those future items from being indexed.

Setting Up The Views

Add The SearchView To Your URLconf

Within your URLconf, add the following line:

(r'^search/', include('haystack.urls')),

This will pull in the default URLconf for Haystack. It consists of a single
URLconf that points to a SearchView instance. You can change this class’s
behavior by passing it any of several keyword arguments or override it entirely
with your own view.

Search Template

Your search template (search/search.html for the default case) will likely
be very simple. The following is enough to get going (your template/block names
will likely differ):

{% extends 'base.html' %}

{% block content %}
 <h2>Search</h2>

 <form method="get" action=".">
 <table>
 {{ form.as_table }}
 <tr>
 <td> </td>
 <td>
 <input type="submit" value="Search">
 </td>
 </tr>
 </table>

 {% if query %}
 <h3>Results</h3>

 {% for result in page.object_list %}
 <p>
 {{ result.object.title }}
 </p>
 {% empty %}
 <p>No results found.</p>
 {% endfor %}

 {% if page.has_previous or page.has_next %}
 <div>
 {% if page.has_previous %}{% endif %}« Previous{% if page.has_previous %}{% endif %}
 |
 {% if page.has_next %}{% endif %}Next »{% if page.has_next %}{% endif %}
 </div>
 {% endif %}
 {% else %}
 {# Show some example queries to run, maybe query syntax, something else? #}
 {% endif %}
 </form>
{% endblock %}

Note that the page.object_list is actually a list of SearchResult
objects instead of individual models. These objects have all the data returned
from that record within the search index as well as score. They can also
directly access the model for the result via {{ result.object }}. So the
{{ result.object.title }} uses the actual Note object in the database
and accesses its title field.

Reindex

The final step, now that you have everything setup, is to put your data in
from your database into the search index. Haystack ships with a management
command to make this process easy.

Note

If you’re using the Solr backend, you have an extra step. Solr’s
configuration is XML-based, so you’ll need to manually regenerate the
schema. You should run
./manage.py build_solr_schema first, drop the XML output in your
Solr’s schema.xml file and restart your Solr server.

Simply run ./manage.py rebuild_index. You’ll get some totals of how many
models were processed and placed in the index.

Note

Using the standard SearchIndex, your search index content is only
updated whenever you run either ./manage.py update_index or start
afresh with ./manage.py rebuild_index.

You should cron up a ./manage.py update_index job at whatever interval
works best for your site (using --age=<num_hours> reduces the number of
things to update).

Alternatively, if you have low traffic and/or your search engine can handle
it, the RealTimeSearchIndex automatically handles updates/deletes
for you.

Complete!

You can now visit the search section of your site, enter a search query and
receive search results back for the query! Congratulations!

What’s Next?

This tutorial just scratches the surface of what Haystack provides. The
SearchQuerySet is the underpinning of all search in Haystack and provides
a powerful, QuerySet-like API (see SearchQuerySet API). You can
use much more complicated SearchForms/SearchViews to give users a better
UI (see Views & Forms). And the Best Practices provides
insight into non-obvious or advanced usages of Haystack.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Glossary

Search is a domain full of it’s own jargon and definitions. As this may be an
unfamiliar territory to many developers, what follows are some commonly used
terms and what they mean.

	Engine

	An engine, for the purposes of Haystack, is a third-party search solution.
It might be a full service (i.e. Solr [http://lucene.apache.org/solr/]) or a library to build an
engine with (i.e. Whoosh [http://whoosh.ca/])

	Index

	The datastore used by the engine is called an index. Its structure can vary
wildly between engines but commonly they resemble a document store. This is
the source of all information in Haystack.

	Document

	A document is essentially a record within the index. It usually contains at
least one blob of text that serves as the primary content the engine searches
and may have additional data hung off it.

	Corpus

	A term for a collection of documents. When talking about the documents stored
by the engine (rather than the technical implementation of the storage), this
term is commonly used.

	Field

	Within the index, each document may store extra data with the main content as
a field. Also sometimes called an attribute, this usually represents metadata
or extra content about the document. Haystack can use these fields for
filtering and display.

	Term

	A term is generally a single word (or word-like) string of characters used
in a search query.

	Stemming

	A means of determining if a word has any root words. This varies by language,
but in English, this generally consists of removing plurals, an action form of
the word, et cetera. For instance, in English, ‘giraffes’ would stem to
‘giraffe’. Similarly, ‘exclamation’ would stem to ‘exclaim’. This is useful
for finding variants of the word that may appear in other documents.

	Boost

	Boost provides a means to take a term or phrase from a search query and alter
the relevance of a result based on if that term is found in the result, a form
of weighting. For instance, if you wanted to more heavily weight results that
included the word ‘zebra’, you’d specify a boost for that term within the
query.

	More Like This

	Incorporating techniques from information retrieval and artificial
intelligence, More Like This is a technique for finding other documents within
the index that closely resemble the document in question. This is useful for
programmatically generating a list of similar content for a user to browse
based on the current document they are viewing.

	Faceting

	Faceting is a way to provide insight to the user into the contents of your
corpus. In its simplest form, it is a set of document counts returned with
results when performing a query. These counts can be used as feedback for
the user, allowing the user to choose interesting aspects of their search
results and “drill down” into those results.

An example might be providing a facet on an author field, providing back a
list of authors and the number of documents in the index they wrote. This
could be presented to the user with a link, allowing the user to click and
narrow their original search to all results by that author.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Views & Forms

Haystack comes with some default, simple views & forms to help you get started
and to cover the common cases. Included is a way to provide:

	Basic, query-only search.

	Search by models.

	Search with basic highlighted results.

	Faceted search.

	Search by models with basic highlighted results.

Most processing is done by the forms provided by Haystack via the search
method. As a result, all but the faceted types (see Faceting) use the
standard SearchView.

There is very little coupling between the forms & the views (other than relying
on the existence of a search method on the form), so you may interchangeably
use forms and/or views anywhere within your own code.

Forms

SearchForm

The most basic of the form types, this form consists of a single field, the
q field (for query). Upon searching, the form will take the cleaned contents
of the q field and perform an auto_query on either the custom
SearchQuerySet you provide or off a default SearchQuerySet.

To customize the SearchQuerySet the form will use, pass it a
searchqueryset parameter to the constructor with the SearchQuerySet
you’d like to use. If using this form in conjunction with a SearchView,
the form will receive whatever SearchQuerySet you provide to the view with
no additional work needed.

The SearchForm also accepts a load_all parameter (True or
False), which determines how the database is queried when iterating through
the results. This also is received automatically from the SearchView.

All other forms in Haystack inherit (either directly or indirectly) from this
form.

HighlightedSearchForm

Identical to the SearchForm except that it tags the highlight method on
to the end of the SearchQuerySet to enable highlighted results.

ModelSearchForm

This form adds new fields to form. It iterates through all registered models for
the current SearchSite and provides a checkbox for each one. If no models
are selected, all types will show up in the results.

HighlightedModelSearchForm

Identical to the ModelSearchForm except that it tags the highlight
method on to the end of the SearchQuerySet to enable highlighted results on
the selected models.

FacetedSearchForm

Identical to the SearchForm except that it adds a hidden selected_facets
field onto the form, allowing the form to narrow the results based on the facets
chosen by the user.

Creating Your Own Form

The simplest way to go about creating your own form is to inherit from
SearchForm (or the desired parent) and extend the search method. By
doing this, you save yourself most of the work of handling data correctly and
stay API compatible with the SearchView.

For example, let’s say you’re providing search with a user-selectable date range
associated with it. You might create a form that looked as follows:

from django import forms
from haystack.forms import SearchForm

class DateRangeSearchForm(SearchForm):
 start_date = forms.DateField(required=False)
 end_date = forms.DateField(required=False)

 def search(self):
 # First, store the SearchQuerySet received from other processing.
 sqs = super(DateRangeSearchForm, self).search()

 # Check to see if a start_date was chosen.
 if self.cleaned_data['start_date']:
 sqs = sqs.filter(pub_date__gte=self.cleaned_data['start_date'])

 # Check to see if an end_date was chosen.
 if self.cleaned_data['end_date']:
 sqs = sqs.filter(pub_date__lte=self.cleaned_data['end_date'])

 return sqs

This form adds two new fields for (optionally) choosing the start and end dates.
Within the search method, we grab the results from the parent form’s
processing. Then, if a user has selected a start and/or end date, we apply that
filtering. Finally, we simply return the SearchQuerySet.

Views

Haystack comes bundled with three views, the class-based views (SearchView &
FacetedSearchView) and a traditional functional view (basic_search).

The class-based views provide for easy extension should you need to alter the
way a view works. Except in the case of faceting (again, see Faceting),
the SearchView works interchangeably with all other forms provided by
Haystack.

The functional view provides an example of how Haystack can be used in more
traditional settings or as an example of how to write a more complex custom
view. It is also thread-safe.

SearchView(template=None, load_all=True, form_class=None, searchqueryset=None, context_class=RequestContext, results_per_page=None)

The SearchView is designed to be easy/flexible enough to override common
changes as well as being internally abstracted so that only altering a specific
portion of the code should be easy to do.

Without touching any of the internals of the SearchView, you can modify
which template is used, which form class should be instantiated to search with,
what SearchQuerySet to use in the event you wish to pre-filter the results.
what Context-style object to use in the response and the load_all
performance optimization to reduce hits on the database. These options can (and
generally should) be overridden at the URLconf level. For example, to have a
custom search limited to the ‘John’ author, displaying all models to search by
and specifying a custom template (my/special/path/john_search.html), your
URLconf should look something like:

from django.conf.urls.defaults import *
from haystack.forms import ModelSearchForm
from haystack.query import SearchQuerySet
from haystack.views import SearchView

sqs = SearchQuerySet().filter(author='john')

Without threading...
urlpatterns = patterns('haystack.views',
 url(r'^$', SearchView(
 template='my/special/path/john_search.html',
 searchqueryset=sqs,
 form_class=SearchForm
), name='haystack_search'),
)

With threading...
from haystack.views import SearchView, search_view_factory

urlpatterns = patterns('haystack.views',
 url(r'^$', search_view_factory(
 view_class=SearchView,
 template='my/special/path/john_search.html',
 searchqueryset=sqs,
 form_class=ModelSearchForm
), name='haystack_search'),
)

Warning

The standard SearchView is not thread-safe. Use the
search_view_factory function, which returns thread-safe instances of
SearchView.

By default, if you don’t specify a form_class, the view will use the
haystack.forms.ModelSearchForm form.

Beyond this customizations, you can create your own SearchView and
extend/override the following methods to change the functionality.

__call__(self, request)

Generates the actual response to the search.

Relies on internal, overridable methods to construct the response. You generally
should avoid altering this method unless you need to change the flow of the
methods or to add a new method into the processing.

build_form(self, form_kwargs=None)

Instantiates the form the class should use to process the search query.

Optionally accepts a dictionary of parameters that are passed on to the
form’s __init__. You can use this to lightly customize the form.

You should override this if you write a custom form that needs special
parameters for instantiation.

get_query(self)

Returns the query provided by the user.

Returns an empty string if the query is invalid. This pulls the cleaned query
from the form, via the q field, for use elsewhere within the SearchView.
This is used to populate the query context variable.

get_results(self)

Fetches the results via the form.

Returns an empty list if there’s no query to search with. This method relies on
the form to do the heavy lifting as much as possible.

build_page(self)

Paginates the results appropriately.

In case someone does not want to use Django’s built-in pagination, it
should be a simple matter to override this method to do what they would
like.

extra_context(self)

Allows the addition of more context variables as needed. Must return a
dictionary whose contents will add to or overwrite the other variables in the
context.

create_response(self)

Generates the actual HttpResponse to send back to the user. It builds the page,
creates the context and renders the response for all the aforementioned
processing.

basic_search(request, template='search/search.html', load_all=True, form_class=ModelSearchForm, searchqueryset=None, context_class=RequestContext, extra_context=None, results_per_page=None)

The basic_search tries to provide most of the same functionality as the
class-based views but resembles a more traditional generic view. It’s both a
working view if you prefer not to use the class-based views as well as a good
starting point for writing highly custom views.

Since it is all one function, the only means of extension are passing in
kwargs, similar to the way generic views work.

Creating Your Own View

As with the forms, inheritance is likely your best bet. In this case, the
FacetedSearchView is a perfect example of how to extend the existing
SearchView. The complete code for the FacetedSearchView looks like:

class FacetedSearchView(SearchView):
 def __name__(self):
 return "FacetedSearchView"

 def extra_context(self):
 extra = super(FacetedSearchView, self).extra_context()

 if self.results == []:
 extra['facets'] = self.form.search().facet_counts()
 else:
 extra['facets'] = self.results.facet_counts()

 return extra

It updates the name of the class (generally for documentation purposes) and
adds the facets from the SearchQuerySet to the context as the facets
variable. As with the custom form example above, it relies on the parent class
to handle most of the processing and extends that only where needed.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Template Tags

Haystack comes with a couple common template tags to make using some of its
special features available to templates.

highlight

Takes a block of text and highlights words from a provided query within that
block of text. Optionally accepts arguments to provide the HTML tag to wrap
highlighted word in, a CSS class to use with the tag and a maximum length of
the blurb in characters.

The defaults are span for the HTML tag, highlighted for the CSS class
and 200 characters for the excerpt.

Syntax:

{% highlight <text_block> with <query> [css_class "class_name"] [html_tag "span"] [max_length 200] %}

Example:

Highlight summary with default behavior.
{% highlight result.summary with request.query %}

Highlight summary but wrap highlighted words with a div and the
following CSS class.
{% highlight result.summary with request.query html_tag "div" class "highlight_me_please" %}

Highlight summary but only show 40 words.
{% highlight result.summary with request.query max_length 40 %}

The highlighter used by this tag can be overridden as needed. See the
Highlighting documentation for more information.

more_like_this

Fetches similar items from the search index to find content that is similar
to the provided model’s content.

Note

This requires a backend that has More Like This built-in.

Syntax:

{% more_like_this model_instance as varname [for app_label.model_name,app_label.model_name,...] [limit n] %}

Example:

Pull a full SearchQuerySet (lazy loaded) of similar content.
{% more_like_this entry as related_content %}

Pull just the top 5 similar pieces of content.
{% more_like_this entry as related_content limit 5 %}

Pull just the top 5 similar entries or comments.
{% more_like_this entry as related_content for "blog.entry,comments.comment" limit 5 %}

This tag behaves exactly like SearchQuerySet.more_like_this`, so all notes in
that regard apply here as well.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Management Commands

Haystack comes with several management commands to make working with Haystack
easier.

clear_index

The clear_index command wipes out your entire search index. Use with
caution. In addition to the standard management command options, it accepts the
following arguments:

``--noinput``:
 If provided, the interactive prompts are skipped and the index is
 uncerimoniously wiped out.
``--verbosity``:
 Accepted but ignored.

By default, this is an INTERACTIVE command and assumes that you do NOT
wish to delete the entire index.

Warning

Depending on the backend you’re using, this may simply delete the entire
directory, so be sure your HAYSTACK_<ENGINE>_PATH setting is correctly
pointed at just the index directory.

update_index

The update_index command will freshen all of the content in your index. It
iterates through all indexed models and updates the records in the index. In
addition to the standard management command options, it accepts the following
arguments:

``--age``:
 Number of hours back to consider objects new. Useful for nightly
 reindexes (``--age=24``). Requires ``SearchIndexes`` to implement
 the ``get_updated_field`` method.
``--batch-size``:
 Number of items to index at once. Default is 1000.
``--site``:
 The site object to use when reindexing (like `search_sites.mysite`).
``--remove``:
 Remove objects from the index that are no longer present in the
 database.
``--workers``:
 Allows for the use multiple workers to parallelize indexing. Requires
 ``multiprocessing``.
``--verbosity``:
 If provided, dumps out more information about what's being done.

 * ``0`` = No output
 * ``1`` = Minimal output describing what models were indexed
 and how many records.
 * ``2`` = Full output, including everything from ``1`` plus output
 on each batch that is indexed, which is useful when debugging.

Note

This command ONLY updates records in the index. It does NOT handle
deletions unless the --remove flag is provided. You might consider
a queue consumer if the memory requirements for --remove don’t
fit your needs. Alternatively, you can use the
RealTimeSearchIndex, which will automatically handle deletions.

rebuild_index

A shortcut for clear_index followed by update_index. It accepts any/all
of the arguments of the following arguments:

``--age``:
 Number of hours back to consider objects new. Useful for nightly
 reindexes (``--age=24``). Requires ``SearchIndexes`` to implement
 the ``get_updated_field`` method.
``--batch-size``:
 Number of items to index at once. Default is 1000.
``--site``:
 The site object to use when reindexing (like `search_sites.mysite`).
``--noinput``:
 If provided, the interactive prompts are skipped and the index is
 uncerimoniously wiped out.
``--remove``:
 Remove objects from the index that are no longer present in the
 database.
``--verbosity``:
 If provided, dumps out more information about what's being done.

 * ``0`` = No output
 * ``1`` = Minimal output describing what models were indexed
 and how many records.
 * ``2`` = Full output, including everything from ``1`` plus output
 on each batch that is indexed, which is useful when debugging.

For when you really, really want a completely rebuilt index.

build_solr_schema

Once all of your SearchIndex classes are in place, this command can be used
to generate the XML schema Solr needs to handle the search data. It accepts no
arguments.

haystack_info

Provides some basic information about how Haystack is setup and what models it
is handling. It accepts no arguments. Useful when debugging or when using
Haystack-enabled third-party apps.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Architecture Overview

SearchQuerySet

One main implementation.

	Standard API that loosely follows QuerySet

	Handles most queries

	Allows for custom “parsing”/building through API

	Dispatches to SearchQuery for actual query

	Handles automatically creating a query

	Allows for raw queries to be passed straight to backend.

SearchQuery

Implemented per-backend.

	Method for building the query out of the structured data.

	Method for cleaning a string of reserved characters used by the backend.

Main class provides:

	Methods to add filters/models/order-by/boost/limits to the search.

	Method to perform a raw search.

	Method to get the number of hits.

	Method to return the results provided by the backend (likely not a full list).

SearchBackend

Implemented per-backend.

	Connects to search engine

	Method for saving new docs to index

	Method for removing docs from index

	Method for performing the actual query

SearchSite

One main implementation.

	Standard API that loosely follows django.contrib.admin.sites.AdminSite

	Handles registering/unregistering models to search on a per-site basis.

	Provides a means of adding custom indexes to a model, like ModelAdmins.

SearchIndex

Implemented per-model you wish to index.

	Handles generating the document to be indexed.

	Populates additional fields to accompany the document.

	Provides a way to limit what types of objects get indexed.

	Provides a way to index the document(s).

	Provides a way to remove the document(s).

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Backend Support

Supported Backends

	Solr [http://lucene.apache.org/solr/]

	Whoosh [http://whoosh.ca/]

	Xapian [http://xapian.org/]

Backend Capabilities

Solr

Complete & included with Haystack.

	Full SearchQuerySet support

	Automatic query building

	“More Like This” functionality

	Term Boosting

	Faceting

	Stored (non-indexed) fields

	Highlighting

	Requires: pysolr (2.0.13+) & Solr 1.3+

Whoosh

Complete & included with Haystack.

	Full SearchQuerySet support

	Automatic query building

	Term Boosting

	Stored (non-indexed) fields

	Highlighting

	Requires: whoosh (1.1.1+)

Xapian

Complete & available as a third-party download.

	Full SearchQuerySet support

	Automatic query building

	“More Like This” functionality

	Term Boosting

	Faceting

	Stored (non-indexed) fields

	Highlighting

	Requires: Xapian 1.0.5+ & python-xapian 1.0.5+

	Backend can be downloaded here: xapian-haystack [http://github.com/notanumber/xapian-haystack/]

	Backend
	SearchQuerySet Support
	Auto Query Building
	More Like This
	Term Boost
	Faceting
	Stored Fields
	Highlighting

	Solr
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Whoosh
	Yes
	Yes
	No
	Yes
	No
	Yes
	Yes

	Xapian
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes (plugin)

Wishlist

The following are search backends that would be nice to have in Haystack but are
licensed in a way that prevents them from being officially bundled. If the
community expresses interest in any of these, there may be future development.

	Sphinx [http://www.sphinxsearch.com/]

	Hyper Estraier [http://hyperestraier.sourceforge.net/]

Sphinx

	Full SearchQuerySet support

	Automatic query building

	Term Boosting

	Stored (non-indexed) fields

	Highlighting

	Requires: sphinxapi.py (Comes with Sphinx)

Hyper Estraier

	Full SearchQuerySet support

	Automatic query building

	“More Like This” functionality

	Highlighting

	Requires: SWIG bindings

	Backend
	SearchQuerySet Support
	Auto Query Building
	More Like This
	Term Boost
	Faceting
	Stored Fields
	Highlighting

	Sphinx
	Yes
	Yes
	No
	Yes
	No
	Yes
	Yes

	Hyper Estraier
	Yes
	Yes
	Yes
	No
	No
	No
	Yes (plugin)

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Installing Search Engines

Solr

Official Download Location: http://www.apache.org/dyn/closer.cgi/lucene/solr/

Solr is Java but comes in a pre=packaged form that requires very little other
than the JRE and Jetty. It’s very performant and has an advanced featureset.
Haystack requires Solr 1.3+. Installation is relatively simple:

curl -O http://apache.mirrors.tds.net/lucene/solr/1.4.1/apache-solr-1.4.1.tgz
tar xvzf apache-solr-1.4.1.tgz
cd apache-solr-1.4.1
cd example
java -jar start.jar

You’ll need to revise your schema. You can generate this from your application
(once Haystack is installed and setup) by running
./manage.py build_solr_schema. Take the output from that command and place
it in apache-solr-1.4.1/example/solr/conf/schema.xml. Then restart Solr.

You’ll also need a Solr binding, pysolr. The official pysolr package,
distributed via PyPI, is the best version to use (2.0.13+). Place pysolr.py
somewhere on your PYTHONPATH.

Note

pysolr has it’s own dependencies that aren’t covered by Haystack. For
best results, you should have an ElementTree variant install (preferably the
lxml variant), httplib2 for timeouts (though it will fall back to
httplib) and either the json module that comes with Python 2.5+ or
simplejson.

More Like This

To enable the “More Like This” functionality in Haystack, you’ll need
to enable the MoreLikeThisHandler. Add the following line to your
solrconfig.xml file within the config tag:

<requestHandler name="/mlt" class="solr.MoreLikeThisHandler" />

Spelling Suggestions

To enable the spelling suggestion functionality in Haystack, you’ll need to
enable the SpellCheckComponent.

The first thing to do is create a special field on your SearchIndex class
that mirrors the text field, but has indexed=False on it. This disables
the post-processing that Solr does, which can mess up your suggestions.
Something like the following is suggested:

class MySearchIndex(indexes.SearchIndex):
 text = indexes.CharField(document=True, use_template=True)
 # ... normal fields then...
 suggestions = indexes.CharField()

 def prepare(self, obj):
 prepared_data = super(NoteIndex, self).prepare(object)
 prepared_data['suggestions'] = prepared_data['text']
 return prepared_data

Then, you enable it in Solr by adding the following line to your
solrconfig.xml file within the config tag:

<searchComponent name="spellcheck" class="solr.SpellCheckComponent">

 <str name="queryAnalyzerFieldType">textSpell</str>

 <lst name="spellchecker">
 <str name="name">default</str>
 <str name="field">suggestions</str>
 <str name="spellcheckIndexDir">./spellchecker1</str>
 <str name="buildOnCommit">true</str>
 </lst>
</searchComponent>

Then change your default handler from:

<requestHandler name="standard" class="solr.StandardRequestHandler" default="true" />

... to ...:

<requestHandler name="standard" class="solr.StandardRequestHandler" default="true">
 <arr name="last-components">
 <str>spellcheck</str>
 </arr>
</requestHandler>

Be warned that the <str name="field">suggestions</str> portion will be specific to
your SearchIndex classes (in this case, assuming the main field is called
text).

Whoosh

Official Download Location: http://bitbucket.org/mchaput/whoosh/

Whoosh is pure Python, so it’s a great option for getting started quickly and
for development, though it does work for small scale live deployments. The
current recommended version is 1.3.1+. You can install via PyPI [http://pypi.python.org/pypi/Whoosh/] using:

sudo easy_install whoosh
... or ...
sudo pip install whoosh

Note that, while capable otherwise, the Whoosh backend does not currently
support “More Like This” or faceting. Support for these features has recently
been added to Whoosh itself & may be present in a future release.

Xapian

Official Download Location: http://xapian.org/download

Xapian is written in C++ so it requires compilation (unless your OS has a
package for it). Installation looks like:

curl -O http://oligarchy.co.uk/xapian/1.0.11/xapian-core-1.0.11.tar.gz
curl -O http://oligarchy.co.uk/xapian/1.0.11/xapian-bindings-1.0.11.tar.gz

tar xvzf xapian-core-1.0.11.tar.gz
tar xvzf xapian-bindings-1.0.11.tar.gz

cd xapian-core-1.0.11
./configure
make
sudo make install

cd ..
cd xapian-bindings-1.0.11
./configure
make
sudo make install

Xapian is a third-party supported backend. It is not included in Haystack
proper due to licensing. To use it, you need both Haystack itself as well as
xapian-haystack. You can download the source from
http://github.com/notanumber/xapian-haystack/tree/master. Installation
instructions can be found on that page as well. The backend, written
by David Sauve (notanumber), fully implements the SearchQuerySet API and is
an excellent alternative to Solr.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Haystack Settings

As a way to extend/change the default behavior within Haystack, there are
several settings you can alter within your settings.py. This is a
comprehensive list of the settings Haystack recognizes.

HAYSTACK_DEFAULT_OPERATOR

Optional

This setting controls what the default behavior for chaining SearchQuerySet
filters together is.

Valid options are:

HAYSTACK_DEFAULT_OPERATOR = 'AND'
HAYSTACK_DEFAULT_OPERATOR = 'OR'

Defaults to AND.

HAYSTACK_SITECONF

Required

This setting controls what module should be loaded to setup your SearchSite.
The module should be on your PYTHONPATH and should contain only the calls
necessary to setup Haystack to your needs.

The convention is to name this file search_sites and place it in the same
directory as your settings.py and/or urls.py.

Valid options are:

HAYSTACK_SITECONF = 'myproject.search_sites'

No default is provided.

HAYSTACK_SEARCH_ENGINE

Required

This setting controls which backend should be used. You should provide the
short name (e.g. solr), not the full filename of the backend (e.g.
solr_backend.py).

Valid options are:

HAYSTACK_SEARCH_ENGINE = 'solr'
HAYSTACK_SEARCH_ENGINE = 'whoosh'
HAYSTACK_SEARCH_ENGINE = 'xapian'
HAYSTACK_SEARCH_ENGINE = 'simple'
HAYSTACK_SEARCH_ENGINE = 'dummy'

No default is provided.

HAYSTACK_SEARCH_RESULTS_PER_PAGE

Optional

This setting controls how many results are shown per page when using the
included SearchView and its subclasses.

An example:

HAYSTACK_SEARCH_RESULTS_PER_PAGE = 50

Defaults to 20.

HAYSTACK_INCLUDE_SPELLING

Optional

This setting controls if spelling suggestions should be included in search
results. This can potentially have performance implications so it is disabled
by default.

An example:

HAYSTACK_INCLUDE_SPELLING = True

Works for the solr, xapian and whoosh backends.

HAYSTACK_SOLR_URL

Required when using the ``solr`` backend

This setting controls what URL the solr backend should be connecting to.
This depends on how the user sets up their Solr daemon.

Examples:

HAYSTACK_SOLR_URL = 'http://localhost:9000/solr/test'
HAYSTACK_SOLR_URL = 'http://solr.mydomain.com/solr/mysite'

No default is provided.

HAYSTACK_SOLR_TIMEOUT

Optional when using the ``solr`` backend

This setting controls the time to wait for a response from Solr in seconds.

Examples:

HAYSTACK_SOLR_TIMEOUT = 30

The default is 10 seconds.

HAYSTACK_WHOOSH_PATH

Required when using the ``whoosh`` backend

This setting controls where on the filesystem the Whoosh indexes will be stored.
The user must have the appropriate permissions for reading and writing to this
directory.

Note

This should be it’s own directory, with nothing else in it. Pointing this
at a directory (like your project root) could cause you to lose data when
clearing the index.

Any trailing slashes should be left off.

Finally, you should ensure that this directory is not located within the
document root of your site and that you take appropriate security precautions.

An example:

HAYSTACK_WHOOSH_PATH = '/home/mysite/whoosh_index'

No default is provided.

HAYSTACK_WHOOSH_STORAGE

Optional

This setting controls whether Whoosh uses either the standard file-based
storage or the RAM-based storage.

Note that the RAM-based storage is not permanent and disappears when the
process is ended. This is mostly useful for testing.

Examples:

HAYSTACK_WHOOSH_STORAGE = 'file'
HAYSTACK_WHOOSH_STORAGE = 'ram'

The default is ‘file’.

HAYSTACK_WHOOSH_POST_LIMIT

Optional

This setting controls how large of a document Whoosh will accept when writing.

Examples:

HAYSTACK_WHOOSH_POST_LIMIT = 256 * 1024 * 1024

The default is 128 * 1024 * 1024.

HAYSTACK_XAPIAN_PATH

Required when using the ``xapian`` backend

This setting controls where on the filesystem the Xapian indexes will be stored.
The user must have the appropriate permissions for reading and writing to this
directory.

Note

This should be it’s own directory, with nothing else in it. Pointing this
at a directory (like your project root) could cause you to lose data when
clearing the index.

Any trailing slashes should be left off.

Finally, you should ensure that this directory is not located within the
document root of your site and that you take appropriate security precautions.

An example:

HAYSTACK_XAPIAN_PATH = '/home/mysite/xapian_index'

No default is provided.

HAYSTACK_BATCH_SIZE

Optional

This setting controls the number of model instances loaded at a time while
reindexing. This affects how often the search indexes must merge (an intensive
operation).

An example:

HAYSTACK_BATCH_SIZE = 100

The default is 1000 models per commit.

HAYSTACK_CUSTOM_HIGHLIGHTER

Optional

This setting allows you to specify your own custom Highlighter
implementation for use with the {% highlight %} template tag. It should be
the full path to the class.

An example:

HAYSTACK_CUSTOM_HIGHLIGHTER = 'myapp.utils.BorkHighlighter'

No default is provided. Haystack automatically falls back to the default
implementation.

HAYSTACK_ENABLE_REGISTRATIONS

Optional

This setting allows you to control whether or not Haystack will manage it’s own
registrations at start-up. It should be a boolean.

An example:

HAYSTACK_ENABLE_REGISTRATIONS = False

Default is True.

Warning

Setting this to False prevents Haystack from doing any imports, which
means that no SearchIndex classes will get registered, no signals will
get hooked up and any use of SearchQuerySet without further work will
yield no results. You can manually import your SearchIndex classes in
other files (like your views or elsewhere). In short, Haystack will still
be available but essentially in an un-initialized state.

You should ONLY use this setting if you’re using another third-party
application that causes tracebacks/import errors when used in conjunction
with Haystack.

HAYSTACK_ITERATOR_LOAD_PER_QUERY

Optional

This setting controls the number of results that are pulled at once when
iterating through a SearchQuerySet. If you generally consume large portions
at a time, you can bump this up for better performance.

Note

This is not used in the case of a slice on a SearchQuerySet, which
already overrides the number of results pulled at once.

An example:

HAYSTACK_ITERATOR_LOAD_PER_QUERY = 100

The default is 10 results at a time.

HAYSTACK_LIMIT_TO_REGISTERED_MODELS

Optional

This setting allows you to control whether or not Haystack will limit the
search results seen to just the models registered. It should be a boolean.

If your search index is never used for anything other than the models
registered with Haystack, you can turn this off and get a small to moderate
performance boost.

An example:

HAYSTACK_LIMIT_TO_REGISTERED_MODELS = False

Default is True.

HAYSTACK_SILENTLY_FAIL

Optional

This setting allows you to control whether or not Haystack will silently
fail when querying the index or not. On by default, this allows big
reindexes that simply lost a connection to mostly succeed, given the
time involved.

An example:

HAYSTACK_SILENTLY_FAIL = False

Default is True.

HAYSTACK_ID_FIELD

Optional

This setting allows you to control what the unique field name used internally
by Haystack is called. Rarely needed unless your field names collide with
Haystack’s defaults.

An example:

HAYSTACK_ID_FIELD = 'my_id'

Default is id.

HAYSTACK_DJANGO_CT_FIELD

Optional

This setting allows you to control what the content type field name used
internally by Haystack is called. Rarely needed unless your field names
collide with Haystack’s defaults.

An example:

HAYSTACK_DJANGO_CT_FIELD = 'my_django_ct'

Default is django_ct.

HAYSTACK_DJANGO_ID_FIELD

Optional

This setting allows you to control what the primary key field name used
internally by Haystack is called. Rarely needed unless your field names
collide with Haystack’s defaults.

An example:

HAYSTACK_DJANGO_ID_FIELD = 'my_django_id'

Default is django_id.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

(In)Frequently Asked Questions

What is Haystack?

Haystack is meant to be a portable interface to a search engine of your choice.
Some might call it a search framework, an abstraction layer or what have you.
The idea is that you write your search code once and should be able to freely
switch between backends as your situation necessitates.

Why should I consider using Haystack?

Haystack is targeted at the following use cases:

	If you want to feature search on your site and search solutions like Google or
Yahoo search don’t fit your needs.

	If you want to be able to customize your search and search on more than just
the main content.

	If you want to have features like drill-down (faceting) or “More Like This”.

	If you want a interface that is non-search engine specific, allowing you to
change your mind later without much rewriting.

When should I not be using Haystack?

	Non-Model-based data. If you just want to index random data (flat files,
alternate sources, etc.), Haystack isn’t a good solution. Haystack is very
Model-based and doesn’t work well outside of that use case.

	Ultra-high volume. Because of the very nature of Haystack (abstraction layer),
there’s more overhead involved. This makes it portable, but as with all
abstraction layers, you lose a little performance. You also can’t take full
advantage of the exact feature-set of your search engine. This is the price
of pluggable backends.

Why was Haystack created when there are so many other search options?

The proliferation of search options in Django is a relatively recent development
and is actually one of the reasons for Haystack’s existence. There are too
many options that are only partial solutions or are too engine specific.

Further, most use an unfamiliar API and documentation is lacking in most cases.

Haystack is an attempt to unify these efforts into one solution. That’s not to
say there should be no alternatives, but Haystack should provide a good
solution to 80%+ of the search use cases out there.

What’s the history behind Haystack?

Haystack started because of my frustration with the lack of good search options
(before many other apps came out) and as the result of extensive use of
Djangosearch. Djangosearch was a decent solution but had a number of
shortcomings, such as:

	Tied to the models.py, so you’d have to modify the source of third-party (
or django.contrib) apps in order to effectively use it.

	All or nothing approach to indexes. So all indexes appear on all sites and
in all places.

	Lack of tests.

	Lack of documentation.

	Uneven backend implementations.

The initial idea was to simply fork Djangosearch and improve on these (and
other issues). However, after stepping back, I decided to overhaul the entire
API (and most of the underlying code) to be more representative of what I would
want as an end-user. The result was starting afresh and reusing concepts (and
some code) from Djangosearch as needed.

As a result of this heritage, you can actually still find some portions of
Djangosearch present in Haystack (especially in the SearchIndex and
SearchBackend classes) where it made sense. The original authors of
Djangosearch are aware of this and thus far have seemed to be fine with this
reuse.

Why doesn’t <search engine X> have a backend included in Haystack?

Several possibilities on this.

	Licensing

A common problem is that the Python bindings for a specific engine may
have been released under an incompatible license. The goal is for Haystack
to remain BSD licensed and importing bindings with an incompatible license
can technically convert the entire codebase to that license. This most
commonly occurs with GPL’ed bindings.

	Lack of time

The search engine in question may be on the list of backends to add and we
simply haven’t gotten to it yet. We welcome patches for additional backends.

	Incompatible API

In order for an engine to work well with Haystack, a certain baseline set of
features is needed. This is often an issue when the engine doesn’t support
ranged queries or additional attributes associated with a search record.

	We’re not aware of the engine

If you think we may not be aware of the engine you’d like, please tell us
about it (preferably via the group -
http://groups.google.com/group/django-haystack/). Be sure to check through
the backends (in case it wasn’t documented) and search the history on the
group to minimize duplicates.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Sites Using Haystack

The following sites are a partial list of people using Haystack. I’m always
interested in adding more sites, so please find me (daniellindsley) via
IRC or the mailing list thread.

LJWorld/Lawrence.com/KUSports

For all things search-related.

Using: Solr

	http://www2.ljworld.com/search/

	http://www2.ljworld.com/search/vertical/news.story/

	http://www2.ljworld.com/marketplace/

	http://www.lawrence.com/search/

	http://www.kusports.com/search/

AltWeeklies

Providing an API to story aggregation.

Using: Whoosh

	http://www.northcoastjournal.com/altweeklies/documentation/

Trapeze

Various projects.

Using: Xapian

	http://www.trapeze.com/

	http://www.windmobile.ca/

	http://www.bonefishgrill.com/

	http://www.canadiantire.ca/ (Portions of)

Eldarion

Various projects.

Using: Solr

	http://eldarion.com/

Sunlight Labs

For general search.

Using: Whoosh & Solr

	http://sunlightlabs.com/

	http://subsidyscope.com/

NASA

For general search.

Using: Solr

	An internal site called SMD Spacebook 1.1.

	http://science.nasa.gov/

AllForLocal

For general search.

	http://www.allforlocal.com/

HUGE

Various projects.

Using: Solr

	http://hugeinc.com/

	http://houselogic.com/

Brick Design

For search on Explore.

Using: Solr

	http://bricksf.com/

	http://explore.org/

Winding Road

For general search.

Using: Solr

	http://www.windingroad.com/

Reddit

For Reddit Gifts.

Using: Whoosh

	http://redditgifts.com/

Pegasus News

For general search.

Using: Xapian

	http://www.pegasusnews.com/

Rampframe

For general search.

Using: Xapian

	http://www.rampframe.com/

Forkinit

For general search, model-specific search and suggestions via MLT.

Using: Solr

	http://forkinit.com/

Structured Abstraction

For general search.

Using: Xapian

	http://www.structuredabstraction.com/

	http://www.delivergood.org/

CustomMade

For general search.

Using: Solr

	http://www.custommade.com/

University of the Andes, Dept. of Political Science

For general search & section-specific search. Developed by Monoku.

Using: Solr

	http://www.congresovisible.org/

	http://www.monoku.com/

Christchurch Art Gallery

For general search & section-specific search.

Using: Solr

	http://christchurchartgallery.org.nz/search/

	http://christchurchartgallery.org.nz/collection/browse/

DevCheatSheet.com

For general search.

Using: Xapian

	http://devcheatsheet.com/

TodasLasRecetas

For search, faceting & More Like This.

Using: Solr

	http://www.todaslasrecetas.es/receta/s/?q=langostinos

	http://www.todaslasrecetas.es/receta/9526/brochetas-de-langostinos

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Haystack-Related Applications

Sub Apps

These are apps that build on top of the infrastructure provided by Haystack.
Useful for essentially extending what Haystack can do.

queued_search

http://github.com/toastdriven/queued_search

Provides a queue-based setup as an alternative to RealTimeSearchIndex or
constantly running the update_index command. Useful for high-load, short
update time situations.

django-celery-haystack

https://github.com/mixcloud/django-celery-haystack-SearchIndex

Also provides a queue-based setup, this time centered around Celery. Useful
for keeping the index fresh.

saved_searches

http://github.com/toastdriven/saved_searches

Adds personalization to search. Retains a history of queries run by the various
users on the site (including anonymous users). This can be used to present the
user with their search history and provide most popular/most recent queries
on the site.

haystack-static-pages

http://github.com/trapeze/haystack-static-pages

Provides a simple way to index flat (non-model-based) content on your site.
By using the management command that comes with it, it can crawl all pertinent
pages on your site and add them to search.

django-tumbleweed

http://github.com/mcroydon/django-tumbleweed

Provides a tumblelog-like view to any/all Haystack-enabled models on your
site. Useful for presenting date-based views of search data. Attempts to avoid
the database completely where possible.

Haystack-Enabled Apps

These are reusable apps that ship with SearchIndexes, suitable for quick
integration with Haystack.

	django-faq (freq. asked questions app) - http://github.com/benspaulding/django-faq

	django-essays (blog-like essay app) - http://github.com/bkeating/django-essays

	gtalug (variety of apps) - http://github.com/myles/gtalug

	sciencemuseum (science museum open data) - http://github.com/simonw/sciencemuseum

	vz-wiki (wiki) - http://github.com/jobscry/vz-wiki

	ffmff (events app) - http://github.com/stefreak/ffmff

	Dinette (forums app) - http://github.com/uswaretech/Dinette

	fiftystates_site (site) - http://github.com/sunlightlabs/fiftystates_site

	Open-Knesset (site) - http://github.com/ofri/Open-Knesset

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Debugging Haystack

There are some common problems people run into when using Haystack for the first
time. Some of the common problems and things to try appear below.

Note

As a general suggestion, your best friend when debugging an issue is to
use the pdb library included with Python. By dropping a
import pdb; pdb.set_trace() in your code before the issue occurs, you
can step through and examine variable/logic as you progress through. Make
sure you don’t commit those pdb lines though.

“No module named haystack.”

This problem usually occurs when first adding Haystack to your project.

	Are you using the haystack directory within your django-haystack
checkout/install?

	Is the haystack directory on your PYTHONPATH? Alternatively, is
haystack symlinked into your project?

	Start a Django shell (./manage.py shell) and try import haystack.
You may receive a different, more descriptive error message.

	Double-check to ensure you have no circular imports. (i.e. module A tries
importing from module B which is trying to import from module A.)

“No results found.” (On the web page)

Several issues can cause no results to be found. Most commonly it is either
not running a rebuild_index to populate your index or having a blank
document=True field, resulting in no content for the engine to search on.

	Do you have a search_sites.py that runs haystack.autodiscover?

	Have you registered your models with the main haystack.site (usually
within your search_indexes.py)?

	Do you have data in your database?

	Have you run a ./manage.py rebuild_index to index all of your content?

	Start a Django shell (./manage.py shell) and try:

>>> from haystack.query import SearchQuerySet
>>> sqs = SearchQuerySet().all()
>>> sqs.count()

	You should get back an integer > 0. If not, check the above and reindex.

>>> sqs[0] # Should get back a SearchResult object.
>>> sqs[0].id # Should get something back like 'myapp.mymodel.1'.
>>> sqs[0].text # ... or whatever your document=True field is.

	If you get back either u'' or None, it means that your data isn’t
making it into the main field that gets searched. You need to check that the
field either has a template that uses the model data, a model_attr that
pulls data directly from the model or a prepare/prepare_FOO method that
populates the data at index time.

	Check the template for your search page and ensure it is looping over the
results properly. Also ensure that it’s either accessing valid fields coming
back from the search engine or that it’s trying to access the associated
model via the {{ result.object.foo }} lookup.

“LockError: [Errno 17] File exists: ‘/path/to/whoosh_index/_MAIN_LOCK’”

This is a Whoosh-specific traceback. It occurs when the Whoosh engine in one
process/thread is locks the index files for writing while another process/thread
tries to access them. This is a common error when using RealTimeSearchIndex
with Whoosh under any kind of load, which is why it’s only recommended for
small sites or development.

A way to solve this is to subclass SearchIndex instead:

from haystack.indexes import *

Change from:
#
class MySearchIndex(RealTimeSearchIndex):
#
to:
class MySearchIndex(SearchIndex):
 ...

The final step is to set up a cron job that runs
./manage.py rebuild_index (optionally with --age=24) that runs nightly
(or however often you need) to refresh the search indexes.

The downside to this is that you lose real-time search. For many people, this
isn’t an issue and this will allow you to scale Whoosh up to a much higher
traffic. If this is not acceptable, you should investigate either the Solr or
Xapian backends.

“Import errors on start-up mentioning ‘handle_registrations’”

When initializing, Haystack attempts to import and register all of the
SearchIndex classes you’ve setup. As a by-product of this, especially in
conjunction with third-party apps that attempt to do similar types of imports,
it’s possible (though rare) to get a traceback very early in the start-up
process, usually mentioning handle_registrations.

There are typically three possible causes for this error:

	A syntax/import error in a file included by the search_indexes.py file

	A circular import

	Another app causing models to load early

The first two causes can be debugged by dropping an
import pdb; pdb.set_trace() at the top of the search_indexes.py where
the error is occurring and stepping through to see the real error.

If neither of those is the case, Haystack provides an advanced setting
(HAYSTACK_ENABLE_REGISTRATIONS - Haystack Settings) to disable this importing
behavior and allow your applications to function.

As a note of caution, setting HAYSTACK_ENABLE_REGISTRATIONS = False in your
settings causes Haystack to be left in an uninitialized state. This means that
none of your SearchIndex classes will be registered and all attempts to use
SearchQuerySet will yield no results. To continue using Haystack, you’ll
need to manually import your search_indexes.py files, either in your
models.py or views.py files (or something similar). Additionally, any
use at the console/management commands may also require similar imports.

Finally, should this occur to you, it would be appreciated if you could report
the issue and the app(s) you’re using that are causing the issue in conjunction
with Haystack on either the mailing list or on the GitHub issue tracker.

“Failed to add documents to Solr: [Reason: None]”

This is a Solr-specific traceback. It generally occurs when there is an error
with your HAYSTACK_SOLR_URL. Since Solr acts as a webservice, you should
test the URL in your web browser. If you receive an error, you may need to
change your URL.

This can also be caused when using old versions of pysolr (2.0.9 and before),
using httplib2 and including a trailing slash in your HAYSTACK_SOLR_URL.
Please upgrade your version of pysolr (2.0.13+).

“Got an unexpected keyword argument ‘boost’”

This is a Solr-specific traceback. This can also be caused when using old
versions of pysolr (2.0.12 and before). Please upgrade your version of
pysolr (2.0.13+).

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Best Practices

What follows are some general recommendations on how to improve your search.
Some tips represent performance benefits, some provide a better search index.
You should evaluate these options for yourself and pick the ones that will
work best for you. Not all situations are created equal and many of these
options could be considered mandatory in some cases and unnecessary premature
optimizations in others. Your mileage may vary.

Good Search Needs Good Content

Most search engines work best when they’re given corpuses with predominantly
text (as opposed to other data like dates, numbers, etc.) in decent quantities
(more than a couple words). This is in stark contrast to the databases most
people are used to, which rely heavily on non-text data to create relationships
and for ease of querying.

To this end, if search is important to you, you should take the time to
carefully craft your SearchIndex subclasses to give the search engine the
best information you can. This isn’t necessarily hard but is worth the
investment of time and thought. Assuming you’ve only ever used the
BasicSearchIndex, in creating custom SearchIndex classes, there are
some easy improvements to make that will make your search better:

	For your document=True field, use a well-constructed template.

	Add fields for data you might want to be able to filter by.

	If the model has related data, you can squash good content from those
related models into the parent model’s SearchIndex.

	Similarly, if you have heavily de-normalized models, it may be best
represented by a single indexed model rather than many indexed models.

Well-Constructed Templates

A relatively unique concept in Haystack is the use of templates associated with
SearchIndex fields. These are data templates, will never been seen by users
and ideally contain no HTML. They are used to collect various data from the
model and structure it as a document for the search engine to analyze and index.

Note

If you read nothing else, this is the single most important thing you can
do to make search on your site better for your users. Good templates can
make or break your search and providing the search engine with good content
to index is critical.

Good templates structure the data well and incorporate as much pertinent text
as possible. This may include additional fields such as titles, author
information, metadata, tags/categories. Without being artificial, you want to
construct as much context as you can. This doesn’t mean you should necessarily
include every field, but you should include fields that provide good content
or include terms you think your users may frequently search on.

Unless you have very unique numbers or dates, neither of these types of data
are a good fit within templates. They are usually better suited to other
fields for filtering within a SearchQuerySet.

Additional Fields For Filtering

Documents by themselves are good for generating indexes of content but are
generally poor for filtering content, for instance, by date. All search engines
supported by Haystack provide a means to associate extra data as
attributes/fields on a record. The database analogy would be adding extra
columns to the table for filtering.

Good candidates here are date fields, number fields, de-normalized data from
related objects, etc. You can expose these things to users in the form of a
calendar range to specify, an author to look up or only data from a certain
series of numbers to return.

You will need to plan ahead and anticipate what you might need to filter on,
though with each field you add, you increase storage space usage. It’s generally
NOT recommended to include every field from a model, just ones you are
likely to use.

Related Data

Related data is somewhat problematic to deal with, as most search engines are
better with documents than they are with relationships. One way to approach this
is to de-normalize a related child object or objects into the parent’s document
template. The inclusion of a foreign key’s relevant data or a simple Django
{% for %} templatetag to iterate over the related objects can increase the
salient data in your document. Be careful what you include and how you structure
it, as this can have consequences on how well a result might rank in your
search.

Avoid Hitting The Database

A very easy but effective thing you can do to drastically reduce hits on the
database is to pre-render your search results using stored fields then disabling
the load_all aspect of your SearchView.

Warning

This technique may cause a substantial increase in the size of your index
as you are basically using it as a storage mechanism.

To do this, you setup one or more stored fields (indexed=False) on your
SearchIndex classes. You should specify a template for the field, filling it
with the data you’d want to display on your search results pages. When the model
attached to the SearchIndex is placed in the index, this template will get
rendered and stored in the index alongside the record.

Note

The downside of this method is that the HTML for the result will be locked
in once it is indexed. To make changes to the structure, you’d have to
reindex all of your content. It also limits you to a single display of the
content (though you could use multiple fields if that suits your needs).

The second aspect is customizing your SearchView and its templates. First,
pass the load_all=False to your SearchView, ideally in your URLconf.
This prevents the SearchQuerySet from loading all models objects for results
ahead of time. Then, in your template, simply display the stored content from
your SearchIndex as the HTML result.

Warning

To do this, you must absolutely avoid using {{ result.object }} or any
further accesses beyond that. That call will hit the database, not only
nullifying your work on lessening database hits, but actually making it
worse as there will now be at least query for each result, up from a single
query for each type of model with load_all=True.

Content-Type Specific Templates

Frequently, when displaying results, you’ll want to customize the HTML output
based on what model the result represents.

In practice, the best way to handle this is through the use of include
along with the data on the SearchResult.

Your existing loop might look something like:

{% for result in page.object_list %}
 <p>
 {{ result.object.title }}
 </p>
{% empty %}
 <p>No results found.</p>
{% endfor %}

An improved version might look like:

{% for result in page.object_list %}
 {% if result.content_type == "blog.post" %}
 {% include "search/includes/blog/post.html" %}
 {% endif %}
 {% if result.content_type == "media.photo" %}
 {% include "search/includes/media/photo.html" %}
 {% endif %}
{% empty %}
 <p>No results found.</p>
{% endfor %}

Those include files might look like:

search/includes/blog/post.html
<div class="post_result">
 <h3>{{ result.object.title }}</h3>

 <p>{{ result.object.tease }}</p>
</div>

search/includes/media/photo.html
<div class="photo_result">

 <p>Taken By {{ result.object.taken_by }}</p>
</div>

You can make this even better by standardizing on an includes layout, then
writing a template tag or filter that generates the include filename. Usage
might looks something like:

{% for result in page.object_list %}
 {% with result|search_include as fragment %}
 {% include fragment %}
 {% endwith %}
{% empty %}
 <p>No results found.</p>
{% endfor %}

Real-Time Search

If your site sees heavy search traffic and up-to-date information is very important,
Haystack provides a way to constantly keep your index up to date. By using the
RealTimeSearchIndex class instead of the SearchIndex class, Haystack will
automatically update the index whenever a model is saved/deleted.

You can find more information within the SearchIndex API documentation.

Use Of A Queue For A Better User Experience

By default, you have to manually reindex content, Haystack immediately tries to merge
it into the search index. If you have a write-heavy site, this could mean your
search engine may spend most of its time churning on constant merges. If you can
afford a small delay between when a model is saved and when it appears in the
search results, queuing these merges is a good idea.

You gain a snappier interface for users as updates go into a queue (a fast
operation) and then typical processing continues. You also get a lower churn
rate, as most search engines deal with batches of updates better than many
single updates. You can also use this to distribute load, as the queue consumer
could live on a completely separate server from your webservers, allowing you
to tune more efficiently.

Implementing this is relatively simple. There are two parts, creating a new
QueuedSearchIndex class and creating a queue processing script to handle the
actual updates.

For the QueuedSearchIndex, simply inherit from the SearchIndex provided
by Haystack and override the _setup_save/_setup_delete methods. These
methods usually attach themselves to their model’s post_save/post_delete
signals and call the backend to update or remove a record. You should override
this behavior and place a message in your queue of choice. At a minimum, you’ll
want to include the model you’re indexing and the id of the model within that
message, so that you can retrieve the proper index from the SearchSite in
your consumer. Then alter all of your SearchIndex classes to inherit from
this new class. Now all saves/deletes will be handled by the queue and you
should receive a speed boost.

For the consumer, this is much more specific to the queue used and your desired
setup. At a minimum, you will need to periodically consume the queue, fetch the
correct index from the SearchSite for your application, load the model from
the message and pass that model to the update_object or remove_object
methods on the SearchIndex. Proper grouping, batching and intelligent
handling are all additional things that could be applied on top to further
improve performance.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Highlighting

Haystack supports two different methods of highlighting. You can either use
SearchQuerySet.highlight or the built-in {% highlight %} template tag,
which uses the Highlighter class. Each approach has advantages and
disadvantages you need to weigh when deciding which to use.

If you want portable, flexible, decently fast code, the
{% highlight %} template tag (or manually using the underlying
Highlighter class) is the way to go. On the other hand, if you care more
about speed and will only ever be using one backend,
SearchQuerySet.highlight may suit your needs better.

Use of SearchQuerySet.highlight is documented in the
SearchQuerySet API documentation and the {% highlight %} tag is
covered in the Template Tags documentation, so the rest of this material
will cover the Highlighter implementation.

Highlighter

The Highlighter class is a pure-Python implementation included with Haystack
that’s designed for flexibility. If you use the {% highlight %} template
tag, you’ll be automatically using this class. You can also use it manually in
your code. For example:

>>> from haystack.utils import Highlighter

>>> my_text = 'This is a sample block that would be more meaningful in real life.'
>>> my_query = 'block meaningful'

>>> highlight = Highlighter(my_query)
>>> highlight.highlight(my_text)
u'...block that would be more meaningful in real life.'

The default implementation takes three optional kwargs: html_tag,
css_class and max_length. These allow for basic customizations to the
output, like so:

>>> from haystack.utils import Highlighter

>>> my_text = 'This is a sample block that would be more meaningful in real life.'
>>> my_query = 'block meaningful'

>>> highlight = Highlighter(my_query, html_tag='div', css_class='found', max_length=35)
>>> highlight.highlight(my_text)
u'...<div class="found">block</div> that would be more <div class="found">meaningful</div>...'

Further, if this implementation doesn’t suit your needs, you can define your own
custom highlighter class. As long as it implements the API you’ve just seen, it
can highlight however you choose. For example:

In ``myapp/utils.py``...
from haystack.utils import Highlighter

class BorkHighlighter(Highlighter):
 def render_html(self, highlight_locations=None, start_offset=None, end_offset=None):
 highlighted_chunk = self.text_block[start_offset:end_offset]

 for word in self.query_words:
 highlighted_chunk = highlighted_chunk.replace(word, 'Bork!')

 return highlighted_chunk

Then set the HAYSTACK_CUSTOM_HIGHLIGHTER setting to
myapp.utils.BorkHighlighter. Usage would then look like:

>>> highlight = BorkHighlighter(my_query)
>>> highlight.highlight(my_text)
u'Bork! that would be more Bork! in real life.'

Now the {% highlight %} template tag will also use this highlighter.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Faceting

What Is Faceting?

Faceting is a way to provide users with feedback about the number of documents
which match terms they may be interested in. At it’s simplest, it gives
document counts based on words in the corpus, date ranges, numeric ranges or
even advanced queries.

Faceting is particularly useful when trying to provide users with drill-down
capabilities. The general workflow in this regard is:

	You can choose what you want to facet on.

	The search engine will return the counts it sees for that match.

	You display those counts to the user and provide them with a link.

	When the user chooses a link, you narrow the search query to only include
those conditions and display the rests, potentially with further facets.

Note

Faceting can be difficult, especially in providing the user with the right
number of options and/or the right areas to be able to drill into. This
is unique to every situation and demands following what real users need.

You may want to consider logging queries and looking at popular terms to
help you narrow down how you can help your users.

Haystack provides functionality so that all of the above steps are possible.
From the ground up, let’s build a faceted search setup. This assumes that you
have been to work through the Getting Started with Haystack and have a working Haystack
installation. The same setup from the Getting Started with Haystack applies here.

1. Determine Facets And SearchQuerySet

Determining what you want to facet on isn’t always easy. For our purposes,
we’ll facet on the author field.

In order to facet effectively, the search engine should store both a standard
representation of your data as well as exact version to facet on. This is
generally accomplished by duplicating the field and storing it via two
different types. Duplication is suggested so that those fields are still
searchable in the standard ways.

To inform Haystack of this, you simply pass along a faceted=True parameter
on the field(s) you wish to facet on. So to modify our existing example:

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user', faceted=True)
 pub_date = DateTimeField(model_attr='pub_date')

Haystack quietly handles all of the backend details for you, creating a similar
field to the type you specified with _exact appended. Our example would now
have both a author and author_exact field, though this is largely an
implementation detail.

To pull faceting information out of the index, we’ll use the
SearchQuerySet.facet method to setup the facet and the
SearchQuerySet.facet_counts method to retrieve back the counts seen.

Experimenting in a shell (./manage.py shell) is a good way to get a feel
for what various facets might look like:

>>> from haystack.query import SearchQuerySet
>>> sqs = SearchQuerySet().facet('author')
>>> sqs.facet_counts()
{
 'dates': {},
 'fields': {
 'author': [
 ('john', 4),
 ('daniel', 2),
 ('sally', 1),
 ('terry', 1),
],
 },
 'queries': {}
}

Note

Note that, despite the duplication of fields, you should provide the
regular name of the field when faceting. Haystack will intelligently
handle the underlying details and mapping.

As you can see, we get back a dictionary which provides access to the three
types of facets available: fields, dates and queries. Since we only
faceted on the author field (which actually facets on the author_exact
field managed by Haystack), only the fields key has any data
associated with it. In this case, we have a corpus of eight documents with four
unique authors.

Note

Facets are chainable, like most SearchQuerySet methods. However, unlike
most SearchQuerySet methods, they are NOT affected by filter or
similar methods. The only method that has any effect on facets is the
narrow method (which is how you provide drill-down).

Now that we have the facet we want, it’s time to implement it.

2. Switch to the FacetedSearchView and FacetedSearchForm

There are three things that we’ll need to do to expose facets to our frontend.
The first is construct the SearchQuerySet we want to use. We should have
that from the previous step. The second is to switch to the
FacetedSearchView. This view is useful because it prepares the facet counts
and provides them in the context as facets.

Optionally, the third step is to switch to the FacetedSearchForm. As it
currently stands, this is only useful if you want to provide drill-down, though
it may provide more functionality in the future. We’ll do it for the sake of
having it in place but know that it’s not required.

In your URLconf, you’ll need to switch to the FacetedSearchView. Your
URLconf should resemble:

from django.conf.urls.defaults import *
from haystack.forms import FacetedSearchForm
from haystack.query import SearchQuerySet
from haystack.views import FacetedSearchView

sqs = SearchQuerySet().facet('author')

urlpatterns = patterns('haystack.views',
 url(r'^$', FacetedSearchView(form_class=FacetedSearchForm, searchqueryset=sqs), name='haystack_search'),
)

The FacetedSearchView will now instantiate the FacetedSearchForm and use
the SearchQuerySet we provided. Now, a facets variable will be present
in the context. This is added in an overridden extra_context method.

3. Display The Facets In The Template

Templating facets involves simply adding an extra bit of processing to display
the facets (and optionally to link to provide drill-down). An example template
might look like this:

<form method="get" action=".">
 <table>
 <tbody>
 {{ form.as_table }}
 <tr>
 <td> </td>
 <td><input type="submit" value="Search"></td>
 </tr>
 </tbody>
 </table>
</form>

{% if query %}
 <!-- Begin faceting. -->
 <h2>By Author</h2>

 <div>
 <dl>
 {% if facets.fields.author %}
 <dt>Author</dt>
 {# Provide only the top 5 authors #}
 {% for author in facets.fields.author|slice:":5" %}
 <dd>{{ author.0 }} ({{ author.1 }})</dd>
 {% endfor %}
 {% else %}
 <p>No author facets.</p>
 {% endif %}
 </dl>
 </div>
 <!-- End faceting -->

 <!-- Display results... -->
 {% for result in results %}
 <div class="search_result">
 <h3>{{ result.object.title }}</h3>

 <p>{{ result.object.body|truncatewords:80 }}</p>
 </div>
 {% empty %}
 <p>Sorry, no results found.</p>
 {% endfor %}
{% endif %}

Displaying the facets is a matter of looping through the facets you want and
providing the UI to suit. The author.0 is the facet text from the backend
and the author.1 is the facet count.

4. Narrowing The Search

We’ve also set ourselves up for the last bit, the drill-down aspect. By
appending on the selected_facets to the URLs, we’re informing the
FacetedSearchForm that we want to narrow our results to only those
containing the author we provided.

For a concrete example, if the facets on author come back as:

{
 'dates': {},
 'fields': {
 'author': [
 ('john', 4),
 ('daniel', 2),
 ('sally', 1),
 ('terry', 1),
],
 },
 'queries': {}
}

You should present a list similar to:

 john (4)
 daniel (2)
 sally (1)
 terry (1)

Warning

Haystack can automatically handle most details around faceting. However,
since selected_facets is passed directly to narrow, it must use the
duplicated field name. Improvements to this are planned but incomplete.

This is simply the default behavior but it is possible to override or provide
your own form which does additional processing. You could also write your own
faceted SearchView, which could provide additional/different facets based
on facets chosen. There is a wide range of possibilities available to help the
user navigate your content.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Autocomplete

Autocomplete is becoming increasingly common as an add-on to search. Haystack
makes it relatively simple to implement. There are two steps in the process,
one to prepare the data and one to implement the actual search.

Step 1. Setup The Data

To do autocomplete effectively, the search backend uses n-grams (essentially
a small window passed over the string). Because this alters the way your
data needs to be stored, the best approach is to add a new field to your
SearchIndex that contains the text you want to autocomplete on.

You have two choices: NgramField & EdgeNgramField. Though very similar,
the choice of field is somewhat important.

	If you’re working with standard text, EdgeNgramField tokenizes on
whitespace. This prevents incorrect matches when part of two different words
are mashed together as one n-gram. This is what most users should use.

	If you’re working with Asian languages or want to be able to autocomplete
across word boundaries, NgramField should be what you use.

Example (continuing from the tutorial):

import datetime
from haystack import indexes
from haystack import site
from myapp.models import Note

class NoteIndex(indexes.SearchIndex):
 text = indexes.CharField(document=True, use_template=True)
 author = indexes.CharField(model_attr='user')
 pub_date = indexes.DateTimeField(model_attr='pub_date')
 # We add this for autocomplete.
 content_auto = indexes.EdgeNgramField(model_attr='content')

 def index_queryset(self):
 """Used when the entire index for model is updated."""
 return Note.objects.filter(pub_date__lte=datetime.datetime.now())

site.register(Note, NoteIndex)

As with all schema changes, you’ll need to rebuild/update your index after
making this change.

Step 2. Performing The Query

Haystack ships with a convenience method to perform most autocomplete searches.
You simply provide a field & the query you wish to search on to the
SearchQuerySet.autocomplete method. Given the previous example, an example
search would look like:

from haystack.query import SearchQuerySet

SearchQuerySet().autocomplete(content_auto='old')
Result match things like 'goldfish', 'cuckold' & 'older'.

The results from the SearchQuerySet.autocomplete method are full search
results, just like any regular filter.

If you need more control over your results, you can use standard
SearchQuerySet.filter calls. For instance:

from haystack.query import SearchQuerySet

sqs = SearchQuerySet().filter(content_auto=request.GET.get('q', ''))

This can also be extended to use SQ for more complex queries (and is what’s
being done under the hood in the SearchQuerySet.autocomplete method).

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Boost

Scoring is a critical component of good search. Normal full-text searches
automatically score a document based on how well it matches the query provided.
However, sometimes you want certain documents to score better than they
otherwise would. Boosting is a way to achieve this. There are three types of
boost:

	Term Boost

	Document Boost

	Field Boost

Note

Document & Field boost support was added in Haystack 1.1.

Despite all being types of boost, they take place at different times and have
slightly different effects on scoring.

Term boost happens at query time (when the search query is run) and is based
around increasing the score is a certain word/phrase is seen.

On the other hand, document & field boosts take place at indexing time (when
the document is being added to the index). Document boost causes the relevance
of the entire result to go up, where field boost causes only searches within
that field to do better.

Term Boost

Term boosting is achieved by using SearchQuerySet.boost. You provide it
the term you want to boost on & a floating point value (based around 1.0
as 100% - no boost).

Example:

Slight increase in relevance for documents that include "banana".
sqs = SearchQuerySet().boost('banana', 1.1)

Big decrease in relevance for documents that include "blueberry".
sqs = SearchQuerySet().boost('blueberry', 0.8)

See the SearchQuerySet API docs for more details on using this method.

Document Boost

Document boosting is done by adding a boost field to the prepared data
SearchIndex creates. The best way to do this is to override
SearchIndex.prepare:

from haystack import indexes
from notes.models import Note

class NoteSearchIndex(indexes.SearchIndex):
 # Your regular fields here then...

 def prepare(self, obj):
 data = super(NoteSearchIndex, self).prepare(obj)
 data['boost'] = 1.1
 return data

Another approach might be to add a new field called boost. However, this
can skew your schema and is not encouraged.

Field Boost

Field boosting is enabled by setting the boost kwarg on the desired field.
An example of this might be increasing the significance of a title:

from haystack import indexes
from notes.models import Note

class NoteSearchIndex(indexes.SearchIndex):
 text = indexes.CharField(document=True, use_template=True)
 title = indexes.CharField(model_attr='title', boost=1.125)

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Advanced Topics

Swapping Backends

As part of the backend loading infrastructure, you can load more than one
search backend at a time or dynamically swap out the backend being used. The
following code demonstrates loading the simple backend:

import haystack
simple_backend = haystack.load_backend('simple')

If no argument is provided, Haystack will load whatever is in the
HAYSTACK_SEARCH_ENGINE setting. Otherwise, any of the following strings
will load their respective backend.

	solr

	xapian

	whoosh

	simple

	dummy

You can also provide the “short” portion of the name (before the _backend)
of a custom backend. Haystack will attempt to load that backend instead from
your PYTHONPATH.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

SearchQuerySet API

	
class SearchQuerySet(site=None, query=None)

	

The SearchQuerySet class is designed to make performing a search and
iterating over its results easy and consistent. For those familiar with Django’s
ORM QuerySet, much of the SearchQuerySet API should feel familiar.

Why Follow QuerySet?

A couple reasons to follow (at least in part) the QuerySet API:

	Consistency with Django

	Most Django programmers have experience with the ORM and can use this
knowledge with SearchQuerySet.

And from a high-level perspective, QuerySet and SearchQuerySet do very similar
things: given certain criteria, provide a set of results. Both are powered by
multiple backends, both are abstractions on top of the way a query is performed.

Quick Start

For the impatient:

from haystack.query import SearchQuerySet
all_results = SearchQuerySet().all()
hello_results = SearchQuerySet().filter(content='hello')
hello_world_results = SearchQuerySet().filter(content='hello world')
unfriendly_results = SearchQuerySet().exclude(content='hello').filter(content='world')
recent_results = SearchQuerySet().order_by('-pub_date')[:5]

SearchQuerySet

By default, SearchQuerySet provide the documented functionality. You can
extend with your own behavior by simply subclassing from SearchQuerySet and
adding what you need, then using your subclass in place of SearchQuerySet.

Most methods in SearchQuerySet “chain” in a similar fashion to QuerySet.
Additionally, like QuerySet, SearchQuerySet is lazy (meaning it evaluates the
query as late as possible). So the following is valid:

from haystack.query import SearchQuerySet
results = SearchQuerySet().exclude(content='hello').filter(content='world').order_by('-pub_date').boost('title', 0.5)[10:20]

The content Shortcut

Searching your document fields is a very common activity. To help mitigate
possible differences in SearchField names (and to help the backends deal
with search queries that inspect the main corpus), there is a special field
called content. You may use this in any place that other fields names would
work (e.g. filter, exclude, etc.) to indicate you simply want to
search the main documents.

For example:

from haystack.query import SearchQuerySet

This searches whatever fields were marked ``document=True``.
results = SearchQuerySet().exclude(content='hello')

This special pseudo-field works best with the exact lookup and may yield
strange or unexpected results with the other lookups.

SearchQuerySet Methods

The primary interface to search in Haystack is through the SearchQuerySet
object. It provides a clean, programmatic, portable API to the search backend.
Many aspects are also “chainable”, meaning you can call methods one after another, each
applying their changes to the previous SearchQuerySet and further narrowing
the search.

All SearchQuerySet objects implement a list-like interface, meaning you can
perform actions like getting the length of the results, accessing a result at an
offset or even slicing the result list.

Methods That Return A SearchQuerySet

all

	
SearchQuerySet.all(self):

	

Returns all results for the query. This is largely a no-op (returns an identical
copy) but useful for denoting exactly what behavior is going on.

none

	
SearchQuerySet.none(self):

	

Returns an EmptySearchQuerySet that behaves like a SearchQuerySet but
always yields no results.

filter

	
SearchQuerySet.filter(self, **kwargs)

	

Filters the search by looking for (and including) certain attributes.

The lookup parameters (**kwargs) should follow the Field lookups below.
If you specify more than one pair, they will be joined in the query according to
the HAYSTACK_DEFAULT_OPERATOR setting (defaults to AND).

If a string with one or more spaces in it is specified as the value, an exact
match will be performed on that phrase.

Warning

Any data you pass to filter is passed along unescaped. If
you don’t trust the data you’re passing along, you should either use
auto_query or use the clean method on your SearchQuery to
sanitize the data.

Example:

SearchQuerySet().filter(content='foo')

SearchQuerySet().filter(content='foo', pub_date__lte=datetime.date(2008, 1, 1))

Identical to the previous example.
SearchQuerySet().filter(content='foo').filter(pub_date__lte=datetime.date(2008, 1, 1))

To escape user data:
sqs = SearchQuerySet()
sqs = sqs.filter(title=sqs.query.clean(user_query))

exclude

	
SearchQuerySet.exclude(self, **kwargs)

	

Narrows the search by ensuring certain attributes are not included.

Warning

Any data you pass to exclude is passed along unescaped. If
you don’t trust the data you’re passing along, you should either use
auto_query or use the clean method on your SearchQuery to
sanitize the data.

Example:

SearchQuerySet().exclude(content='foo')

filter_and

	
SearchQuerySet.filter_and(self, **kwargs)

	

Narrows the search by looking for (and including) certain attributes. Join
behavior in the query is forced to be AND. Used primarily by the filter
method.

filter_or

	
SearchQuerySet.filter_or(self, **kwargs)

	

Narrows the search by looking for (and including) certain attributes. Join
behavior in the query is forced to be OR. Used primarily by the filter
method.

order_by

	
SearchQuerySet.order_by(self, *args)

	

Alters the order in which the results should appear. Arguments should be strings
that map to the attributes/fields within the index. You may specify multiple
fields by comma separating them:

SearchQuerySet().filter(content='foo').order_by('author', 'pub_date')

Default behavior is ascending order. To specify descending order, prepend the
string with a -:

SearchQuerySet().filter(content='foo').order_by('-pub_date')

Note

In general, ordering is locale-specific. Haystack makes no effort to try to
reconcile differences between characters from different languages. This
means that accented characters will sort closely with the same character
and NOT necessarily close to the unaccented form of the character.

If you want this kind of behavior, you should override the prepare_FOO
methods on your SearchIndex objects to transliterate the characters
as you see fit.

highlight

	
SearchQuerySet.highlight(self)

	

If supported by the backend, the SearchResult objects returned will include
a highlighted version of the result:

sqs = SearchQuerySet().filter(content='foo').highlight()
result = sqs[0]
result.highlighted['text'][0] # u'Two computer scientists walk into a bar. The bartender says "Foo!".'

models

	
SearchQuerySet.models(self, *models)

	

Accepts an arbitrary number of Model classes to include in the search. This will
narrow the search results to only include results from the models specified.

Example:

SearchQuerySet().filter(content='foo').models(BlogEntry, Comment)

result_class

	
SearchQuerySet.result_class(self, klass)

	

Allows specifying a different class to use for results.

Overrides any previous usages. If None is provided, Haystack will
revert back to the default SearchResult object.

Example:

SearchQuerySet().result_class(CustomResult)

boost

	
SearchQuerySet.boost(self, term, boost_value)

	

Boosts a certain term of the query. You provide the term to be boosted and the
value is the amount to boost it by. Boost amounts may be either an integer or a
float.

Example:

SearchQuerySet().filter(content='foo').boost('bar', 1.5)

facet

	
SearchQuerySet.facet(self, field)

	

Adds faceting to a query for the provided field. You provide the field (from one
of the SearchIndex classes) you like to facet on.

In the search results you get back, facet counts will be populated in the
SearchResult object. You can access them via the facet_counts method.

Example:

Count document hits for each author within the index.
SearchQuerySet().filter(content='foo').facet('author')

date_facet

	
SearchQuerySet.date_facet(self, field, start_date, end_date, gap_by, gap_amount=1)

	

Adds faceting to a query for the provided field by date. You provide the field
(from one of the SearchIndex classes) you like to facet on, a start_date
(either datetime.datetime or datetime.date), an end_date and the
amount of time between gaps as gap_by (one of 'year', 'month',
'day', 'hour', 'minute' or 'second').

You can also optionally provide a gap_amount to specify a different
increment than 1. For example, specifying gaps by week (every seven days)
would would be gap_by='day', gap_amount=7).

In the search results you get back, facet counts will be populated in the
SearchResult object. You can access them via the facet_counts method.

Example:

Count document hits for each day between 2009-06-07 to 2009-07-07 within the index.
SearchQuerySet().filter(content='foo').date_facet('pub_date', start_date=datetime.date(2009, 6, 7), end_date=datetime.date(2009, 7, 7), gap_by='day')

query_facet

	
SearchQuerySet.query_facet(self, field, query)

	

Adds faceting to a query for the provided field with a custom query. You provide
the field (from one of the SearchIndex classes) you like to facet on and the
backend-specific query (as a string) you’d like to execute.

Please note that this is NOT portable between backends. The syntax is entirely
dependent on the backend. No validation/cleansing is performed and it is up to
the developer to ensure the query’s syntax is correct.

In the search results you get back, facet counts will be populated in the
SearchResult object. You can access them via the facet_counts method.

Example:

Count document hits for authors that start with 'jo' within the index.
SearchQuerySet().filter(content='foo').query_facet('author', 'jo*')

narrow

	
SearchQuerySet.narrow(self, query)

	

Pulls a subset of documents from the search engine to search within. This is
for advanced usage, especially useful when faceting.

Example:

Search, from recipes containing 'blend', for recipes containing 'banana'.
SearchQuerySet().narrow('blend').filter(content='banana')

Using a fielded search where the recipe's title contains 'smoothie', find all recipes published before 2009.
SearchQuerySet().narrow('title:smoothie').filter(pub_date__lte=datetime.datetime(2009, 1, 1))

By using narrow, you can create drill-down interfaces for faceting by
applying narrow calls for each facet that gets selected.

This method is different from SearchQuerySet.filter() in that it does not
affect the query sent to the engine. It pre-limits the document set being
searched. Generally speaking, if you’re in doubt of whether to use
filter or narrow, use filter.

Note

This method is, generally speaking, not necessarily portable between
backends. The syntax is entirely dependent on the backend, though most
backends have a similar syntax for basic fielded queries. No
validation/cleansing is performed and it is up to the developer to ensure
the query’s syntax is correct.

raw_search

	
SearchQuerySet.raw_search(self, query_string, **kwargs)

	

Passes a raw query directly to the backend. This is for advanced usage, where
the desired query can not be expressed via SearchQuerySet.

Warning

Unlike many of the other methods on SearchQuerySet, this method does
not chain by default (depends on the backend). Any other attributes on the
SearchQuerySet are ignored and only the provided query is run.

Example:

In the case of Solr... (this example could be expressed with SearchQuerySet)
SearchQuerySet().raw_search('django_ct:blog.blogentry "However, it is"')

Please note that this is NOT portable between backends. The syntax is entirely
dependent on the backend. No validation/cleansing is performed and it is up to
the developer to ensure the query’s syntax is correct.

Further, the use of **kwargs are completely undocumented intentionally. If
a third-party backend can implement special features beyond what’s present, it
should use those **kwargs for passing that information. Developers should
be careful to make sure there are no conflicts with the backend’s search
method, as that is called directly.

load_all

	
SearchQuerySet.load_all(self)

	

Efficiently populates the objects in the search results. Without using this
method, DB lookups are done on a per-object basis, resulting in many individual
trips to the database. If load_all is used, the SearchQuerySet will
group similar objects into a single query, resulting in only as many queries as
there are different object types returned.

Example:

SearchQuerySet().filter(content='foo').load_all()

load_all_queryset

	
SearchQuerySet.load_all_queryset(self, model_class, queryset)

	

Deprecated for removal before Haystack 1.0-final.

Please see the docs on RelatedSearchQuerySet.

auto_query

	
SearchQuerySet.auto_query(self, query_string)

	

Performs a best guess constructing the search query.

This method is intended for common use directly with a user’s query. It is a
shortcut to the other API methods that follows generally established search
syntax without requiring each developer to implement their own parser.

It handles exact matches (specified with single or double quotes), negation (
using a - immediately before the term) and joining remaining terms with the
operator specified in HAYSTACK_DEFAULT_OPERATOR.

Example:

SearchQuerySet().auto_query('goldfish "old one eye" -tank')

... is identical to...
SearchQuerySet().filter(content='old one eye').filter(content='goldfish').exclude(content='tank')

This method is somewhat naive but works well enough for simple, common cases.

autocomplete

A shortcut method to perform an autocomplete search.

Must be run against fields that are either NgramField or
EdgeNgramField.

Example:

SearchQuerySet().autocomplete(title_autocomplete='gol')

more_like_this

	
SearchQuerySet.more_like_this(self, model_instance)

	

Finds similar results to the object passed in.

You should pass in an instance of a model (for example, one fetched via a
get in Django’s ORM). This will execute a query on the backend that searches
for similar results. The instance you pass in should be an indexed object.
Previously called methods will have an effect on the provided results.

It will evaluate its own backend-specific query and populate the
SearchQuerySet` in the same manner as other methods.

Example:

entry = Entry.objects.get(slug='haystack-one-oh-released')
mlt = SearchQuerySet().more_like_this(entry)
mlt.count() # 5
mlt[0].object.title # "Haystack Beta 1 Released"

...or...
mlt = SearchQuerySet().filter(public=True).exclude(pub_date__lte=datetime.date(2009, 7, 21)).more_like_this(entry)
mlt.count() # 2
mlt[0].object.title # "Haystack Beta 1 Released"

Methods That Do Not Return A SearchQuerySet

count

	
SearchQuerySet.count(self)

	

Returns the total number of matching results.

This returns an integer count of the total number of results the search backend
found that matched. This method causes the query to evaluate and run the search.

Example:

SearchQuerySet().filter(content='foo').count()

best_match

	
SearchQuerySet.best_match(self)

	

Returns the best/top search result that matches the query.

This method causes the query to evaluate and run the search. This method returns
a SearchResult object that is the best match the search backend found:

foo = SearchQuerySet().filter(content='foo').best_match()
foo.id # Something like 5.

Identical to:
foo = SearchQuerySet().filter(content='foo')[0]

latest

	
SearchQuerySet.latest(self, date_field)

	

Returns the most recent search result that matches the query.

This method causes the query to evaluate and run the search. This method returns
a SearchResult object that is the most recent match the search backend
found:

foo = SearchQuerySet().filter(content='foo').latest('pub_date')
foo.id # Something like 3.

Identical to:
foo = SearchQuerySet().filter(content='foo').order_by('-pub_date')[0]

facet_counts

	
SearchQuerySet.facet_counts(self)

	

Returns the facet counts found by the query. This will cause the query to
execute and should generally be used when presenting the data (template-level).

You receive back a dictionary with three keys: fields, dates and
queries. Each contains the facet counts for whatever facets you specified
within your SearchQuerySet.

Note

The resulting dictionary may change before 1.0 release. It’s fairly
backend-specific at the time of writing. Standardizing is waiting on
implementing other backends that support faceting and ensuring that the
results presented will meet their needs as well.

Example:

Count document hits for each author.
sqs = SearchQuerySet().filter(content='foo').facet('author')

sqs.facet_counts()
Gives the following response:
{
'dates': {},
'fields': {
'author': [
('john', 4),
('daniel', 2),
('sally', 1),
('terry', 1),
],
},
'queries': {}
}

spelling_suggestion

	
SearchQuerySet.spelling_suggestion(self, preferred_query=None)

	

Returns the spelling suggestion found by the query.

To work, you must set settings.HAYSTACK_INCLUDE_SPELLING (see
Haystack Settings) to True. Otherwise, None will be returned.

This method causes the query to evaluate and run the search if it hasn’t already
run. Search results will be populated as normal but with an additional spelling
suggestion. Note that this does NOT run the revised query, only suggests
improvements.

If provided, the optional argument to this method lets you specify an alternate
query for the spelling suggestion to be run on. This is useful for passing along
a raw user-provided query, especially when there are many methods chained on the
SearchQuerySet.

Example:

sqs = SearchQuerySet().auto_query('mor exmples')
sqs.spelling_suggestion() # u'more examples'

...or...
suggestion = SearchQuerySet().spelling_suggestion('moar exmples')
suggestion # u'more examples'

values

	
SearchQuerySet.values(self, *fields)

	

Returns a list of dictionaries, each containing the key/value pairs for the
result, exactly like Django’s ValuesQuerySet.

This method causes the query to evaluate and run the search if it hasn’t already
run.

You must provide a list of one or more fields as arguments. These fields will
be the ones included in the individual results.

Example:

sqs = SearchQuerySet().auto_query('banana').values('title', 'description')

values_list

	
SearchQuerySet.values_list(self, *fields, **kwargs)

	

Returns a list of field values as tuples, exactly like Django’s
ValuesListQuerySet.

This method causes the query to evaluate and run the search if it hasn’t already
run.

You must provide a list of one or more fields as arguments. These fields will
be the ones included in the individual results.

You may optionally also provide a flat=True kwarg, which in the case of a
single field being provided, will return a flat list of that field rather than
a list of tuples.

Example:

sqs = SearchQuerySet().auto_query('banana').values_list('title', 'description')

...or just the titles as a flat list...
sqs = SearchQuerySet().auto_query('banana').values_list('title', flat=True)

Field Lookups

The following lookup types are supported:

	exact

	gt

	gte

	lt

	lte

	in

	startswith

	range

These options are similar in function to the way Django’s lookup types work.
The actual behavior of these lookups is backend-specific.

Warning

The startswith filter is strongly affected by the other ways the engine
parses data, especially in regards to stemming (see Glossary). This
can mean that if the query ends in a vowel or a plural form, it may get
stemmed before being evaluated.

This is both backend-specific and yet fairly consistent between engines,
and may be the cause of sometimes unexpected results.

Example:

SearchQuerySet().filter(content='foo')

Identical to:
SearchQuerySet().filter(content__exact='foo')

Other usages look like:
SearchQuerySet().filter(pub_date__gte=datetime.date(2008, 1, 1), pub_date__lt=datetime.date(2009, 1, 1))
SearchQuerySet().filter(author__in=['daniel', 'john', 'jane'])
SearchQuerySet().filter(view_count__range=[3, 5])

EmptySearchQuerySet

Also included in Haystack is an EmptySearchQuerySet class. It behaves just
like SearchQuerySet but will always return zero results. This is useful for
places where you want no query to occur or results to be returned.

RelatedSearchQuerySet

Sometimes you need to filter results based on relations in the database that are
not present in the search index or are difficult to express that way. To this
end, RelatedSearchQuerySet allows you to post-process the search results by
calling load_all_queryset.

Warning

RelatedSearchQuerySet can have negative performance implications.
Because results are excluded based on the database after the search query
has been run, you can’t guarantee offsets within the cache. Therefore, the
entire cache that appears before the offset you request must be filled in
order to produce consistent results. On large result sets and at higher
slices, this can take time.

This is the old behavior of SearchQuerySet, so performance is no worse
than the early days of Haystack.

It supports all other methods that the standard SearchQuerySet does, with
the addition of the load_all_queryset method and paying attention to the
load_all_queryset method of SearchIndex objects when populating the
cache.

load_all_queryset

	
RelatedSearchQuerySet.load_all_queryset(self, model_class, queryset)

	

Allows for specifying a custom QuerySet that changes how load_all will
fetch records for the provided model. This is useful for post-processing the
results from the query, enabling things like adding select_related or
filtering certain data.

Example:

sqs = RelatedSearchQuerySet().filter(content='foo').load_all()
For the Entry model, we want to include related models directly associated
with the Entry to save on DB queries.
sqs = sqs.load_all_queryset(Entry, Entry.objects.all().select_related(depth=1))

This method chains indefinitely, so you can specify QuerySets for as many
models as you wish, one per model. The SearchQuerySet appends on a call to
in_bulk, so be sure that the QuerySet you provide can accommodate this
and that the ids passed to in_bulk will map to the model in question.

If you need to do this frequently and have one QuerySet you’d like to apply
everywhere, you can specify this at the SearchIndex level using the
load_all_queryset method. See SearchIndex API for usage.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

SearchIndex API

	
class SearchIndex(model, backend=None)

	

The SearchIndex class allows the application developer a way to provide data to
the backend in a structured format. Developers familiar with Django’s Form
or Model classes should find the syntax for indexes familiar.

This class is arguably the most important part of integrating Haystack into your
application, as it has a large impact on the quality of the search results and
how easy it is for users to find what they’re looking for. Care and effort
should be put into making your indexes the best they can be.

Quick Start

For the impatient:

import datetime
from haystack.indexes import *
from haystack import site
from myapp.models import Note

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')

 def index_queryset(self):
 "Used when the entire index for model is updated."
 return Note.objects.filter(pub_date__lte=datetime.datetime.now())

site.register(Note, NoteIndex)

Background

Unlike relational databases, most search engines supported by Haystack are
primarily document-based. They focus on a single text blob which they tokenize,
analyze and index. When searching, this field is usually the primary one that
is searched.

Further, the schema used by most engines is the same for all types of data
added, unlike a relational database that has a table schema for each chunk of
data.

It may be helpful to think of your search index as something closer to a
key-value store instead of imagining it in terms of a RDBMS.

Why Create Fields?

Despite being primarily document-driven, most search engines also support the
ability to associate other relevant data with the indexed document. These
attributes can be mapped through the use of fields within Haystack.

Common uses include storing pertinent data information, categorizations of the
document, author information and related data. By adding fields for these pieces
of data, you provide a means to further narrow/filter search terms. This can
be useful from either a UI perspective (a better advanced search form) or from a
developer standpoint (section-dependent search, off-loading certain tasks to
search, et cetera).

Warning

Haystack reserves the following field names for internal use: id,
django_ct, django_id & content. The name & type names
used to be reserved but no longer are.

You can override these field names using the HAYSTACK_ID_FIELD,
HAYSTACK_DJANGO_CT_FIELD & HAYSTACK_DJANGO_ID_FIELD if needed.

Significance Of document=True

Most search engines that were candidates for inclusion in Haystack all had a
central concept of a document that they indexed. These documents form a corpus
within which to primarily search. Because this ideal is so central and most of
Haystack is designed to have pluggable backends, it is important to ensure that
all engines have at least a bare minimum of the data they need to function.

As a result, when creating a SearchIndex, at least one field must be marked
with document=True. This signifies to Haystack that whatever is placed in
this field while indexing is to be the primary text the search engine indexes.
The name of this field can be almost anything, but text is one of the
more common names used.

Stored/Indexed Fields

One shortcoming of the use of search is that you rarely have all or the most
up-to-date information about an object in the index. As a result, when
retrieving search results, you will likely have to access the object in the
database to provide better information.

However, this can also hit the database quite heavily (think
.get(pk=result.id) per object). If your search is popular, this can lead
to a big performance hit. There are two ways to prevent this. The first way is
SearchQuerySet.load_all, which tries to group all similar objects and pull
them though one query instead of many. This still hits the DB and incurs a
performance penalty.

The other option is to leverage stored fields. By default, all fields in
Haystack are both indexed (searchable by the engine) and stored (retained by
the engine and presented in the results). By using a stored field, you can
store commonly used data in such a way that you don’t need to hit the database
when processing the search result to get more information.

For example, one great way to leverage this is to pre-rendering an object’s
search result template DURING indexing. You define an additional field, render
a template with it and it follows the main indexed record into the index. Then,
when that record is pulled when it matches a query, you can simply display the
contents of that field, which avoids the database hit.:

Within myapp/search_indexes.py:

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')
 # Define the additional field.
 rendered = CharField(use_template=True, indexed=False)

Then, inside a template named search/indexes/myapp/note_rendered.txt:

<h2>{{ object.title }}</h2>

<p>{{ object.content }}</p>

And finally, in search/search.html:

...

{% for result in page.object_list %}
 <div class="search_result">
 {{ result.rendered|safe }}
 </div>
{% endfor %}

Keeping The Index Fresh

There are several approaches to keeping the search index in sync with your
database. None are more correct than the others and depending the traffic you
see, the churn rate of your data and what concerns are important to you
(CPU load, how recent, et cetera).

The conventional method is to use SearchIndex in combination with cron
jobs. Running a ./manage.py update_index every couple hours will keep your
data in sync within that timeframe and will handle the updates in a very
efficient batch. Additionally, Whoosh (and to a lesser extent Xapian) behave
better when using this approach.

Another option is to use RealTimeSearchIndex, which uses Django’s signals
to immediately update the index any time a model is saved/deleted. This
yields a much more current search index at the expense of being fairly
inefficient. Solr is the only backend that handles this well under load, and
even then, you should make sure you have the server capacity to spare.

A third option is to develop a custom QueueSearchIndex that, much like
RealTimeSearchIndex, uses Django’s signals to enqueue messages for
updates/deletes. Then writing a management command to consume these messages
in batches, yielding a nice compromise between the previous two options.

Note

Haystack doesn’t ship with a QueueSearchIndex largely because there is
such a diversity of lightweight queuing options and that they tend to
polarize developers. Queuing is outside of Haystack’s goals (provide good,
powerful search) and, as such, is left to the developer.

Additionally, the implementation is relatively trivial in that you simply
extend the same four methods as RealTimeSearchIndex and simply add
messages to the queue of choice.

Advanced Data Preparation

In most cases, using the model_attr parameter on your fields allows you to
easily get data from a Django model to the document in your index, as it handles
both direct attribute access as well as callable functions within your model.

Note

The model_attr keyword argument also can look through relations in
models. So you can do something like model_attr='author__first_name'
to pull just the first name of the author, similar to some lookups used
by Django’s ORM.

However, sometimes, even more control over what gets placed in your index is
needed. To facilitate this, SearchIndex objects have a ‘preparation’ stage
that populates data just before it is indexed. You can hook into this phase in
several ways.

This should be very familiar to developers who have used Django’s forms
before as it loosely follows similar concepts, though the emphasis here is
less on cleansing data from user input and more on making the data friendly
to the search backend.

1. prepare_FOO(self, object)

The most common way to affect a single field’s data is to create a
prepare_FOO method (where FOO is the name of the field). As a parameter
to this method, you will receive the instance that is attempting to be indexed.

Note

This method is analogous to Django’s Form.clean_FOO methods.

To keep with our existing example, one use case might be altering the name
inside the author field to be “firstname lastname <email>”. In this case,
you might write the following code:

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')

 def prepare_author(self, obj):
 return "%s <%s>" % (obj.user.get_full_name(), obj.user.email)

This method should return a single value (or list/tuple/dict) to populate that
fields data upon indexing. Note that this method takes priority over whatever
data may come from the field itself.

Just like Form.clean_FOO, the field’s prepare runs before the
prepare_FOO, allowing you to access self.prepared_data. For example:

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')

 def prepare_author(self, obj):
 # Say we want last name first, the hard way.
 author = u''

 if 'author' in self.prepared_data:
 name_bits = self.prepared_data['author'].split()
 author = "%s, %s" % (name_bits[-1], ' '.join(name_bits[:-1]))

 return author

This method is fully function with model_attr, so if there’s no convenient
way to access the data you want, this is an excellent way to prepare it:

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 categories = MultiValueField()
 pub_date = DateTimeField(model_attr='pub_date')

 def prepare_categories(self, obj):
 # Since we're using a M2M relationship with a complex lookup,
 # we can prepare the list here.
 return [category.id for category in obj.category_set.active().order_by('-created')]

2. prepare(self, object)

Each SearchIndex gets a prepare method, which handles collecting all
the data. This method should return a dictionary that will be the final data
used by the search backend.

Overriding this method is useful if you need to collect more than one piece
of data or need to incorporate additional data that is not well represented
by a single SearchField. An example might look like:

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')

 def prepare(self, object):
 self.prepared_data = super(NoteIndex, self).prepare(object)

 # Add in tags (assuming there's a M2M relationship to Tag on the model).
 # Note that this would NOT get picked up by the automatic
 # schema tools provided by Haystack.
 self.prepared_data['tags'] = [tag.name for tag in object.tags.all()]

 return self.prepared_data

If you choose to use this method, you should make a point to be careful to call
the super() method before altering the data. Without doing so, you may have
an incomplete set of data populating your indexes.

This method has the final say in all data, overriding both what the fields
provide as well as any prepare_FOO methods on the class.

Note

This method is roughly analogous to Django’s Form.full_clean and
Form.clean methods. However, unlike these methods, it is not fired
as the result of trying to access self.prepared_data. It requires
an explicit call.

3. Overriding prepare(self, object) On Individual SearchField Objects

The final way to manipulate your data is to implement a custom SearchField
object and write its prepare method to populate/alter the data any way you
choose. For instance, a (naive) user-created GeoPointField might look
something like:

from haystack.indexes import CharField

class GeoPointField(CharField):
 def __init__(self, **kwargs):
 kwargs['default'] = '0.00-0.00'
 super(GeoPointField, self).__init__(**kwargs)

 def prepare(self, obj):
 return unicode("%s-%s" % (obj.latitude, obj.longitude))

The prepare method simply returns the value to be used for that field. It’s
entirely possible to include data that’s not directly referenced to the object
here, depending on your needs.

Note that this is NOT a recommended approach to storing geographic data in a
search engine (there is no formal suggestion on this as support is usually
non-existent), merely an example of how to extend existing fields.

Note

This method is analagous to Django’s Field.clean methods.

Adding New Fields

If you have an existing SearchIndex and you add a new field to it, Haystack
will add this new data on any updates it sees after that point. However, this
will not populate the existing data you already have.

In order for the data to be picked up, you will need to run ./manage.py
rebuild_index. This will cause all backends to rebuild the existing data
already present in the quickest and most efficient way.

Note

With the Solr backend, you’ll also have to add to the appropriate
schema.xml for your configuration before running the rebuild_index.

Search Index

index_queryset

	
SearchIndex.index_queryset(self)

	

Get the default QuerySet to index when doing a full update.

Subclasses can override this method to avoid indexing certain objects.

read_queryset

	
SearchIndex.read_queryset(self)

	

Get the default QuerySet for read actions.

Subclasses can override this method to work with other managers.
Useful when working with default managers that filter some objects.

prepare

	
SearchIndex.prepare(self, obj)

	

Fetches and adds/alters data before indexing.

get_content_field

	
SearchIndex.get_content_field(self)

	

Returns the field that supplies the primary document to be indexed.

update

	
SearchIndex.update(self)

	

Update the entire index.

update_object

	
SearchIndex.update_object(self, instance, **kwargs)

	

Update the index for a single object. Attached to the class’s
post-save hook.

remove_object

	
SearchIndex.remove_object(self, instance, **kwargs)

	

Remove an object from the index. Attached to the class’s
post-delete hook.

clear

	
SearchIndex.clear(self)

	

Clear the entire index.

reindex

	
SearchIndex.reindex(self)

	

Completely clear the index for this model and rebuild it.

get_updated_field

	
SearchIndex.get_updated_field(self)

	

Get the field name that represents the updated date for the model.

If specified, this is used by the reindex command to filter out results
from the QuerySet, enabling you to reindex only recent records. This
method should either return None (reindex everything always) or a
string of the Model‘s DateField/DateTimeField name.

should_update

	
SearchIndex.should_update(self, instance, **kwargs)

	

Determine if an object should be updated in the index.

It’s useful to override this when an object may save frequently and
cause excessive reindexing. You should check conditions on the instance
and return False if it is not to be indexed.

The kwargs passed along to this method can be the same as the ones passed
by Django when a Model is saved/delete, so it’s possible to check if the object
has been created or not. See django.db.models.signals.post_save for details
on what is passed.

By default, returns True (always reindex).

load_all_queryset

	
SearchIndex.load_all_queryset(self)

	

Provides the ability to override how objects get loaded in conjunction
with RelatedSearchQuerySet.load_all. This is useful for post-processing the
results from the query, enabling things like adding select_related or
filtering certain data.

By default, returns all() on the model’s default manager.

Example:

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')

 def load_all_queryset(self):
 # Pull all objects related to the Note in search results.
 return Note.objects.all().select_related()

When searching, the RelatedSearchQuerySet appends on a call to in_bulk, so be
sure that the QuerySet you provide can accommodate this and that the ids
passed to in_bulk will map to the model in question.

If you need a specific QuerySet in one place, you can specify this at the
RelatedSearchQuerySet level using the load_all_queryset method. See
SearchQuerySet API for usage.

RealTimeSearchIndex

The RealTimeSearchIndex provides all the same functionality as the standard
SearchIndex. However, in addition, it connects to the
post_save/post_delete signals of the model it’s registered with.

This means that anytime a model is saved or deleted, it’s automatically and
immediately updated in the search index, yielding real-time search.

Warning

Not all backends deal well with the kind of document churn that can result
from using the RealTimeSearchIndex. Solr is the only one that handles
it gracefully.

Additionally, this will add more overhead in terms of CPU usage, so you
should be sure to accommodate for this and should have appropriate monitoring
in place.

ModelSearchIndex

The ModelSearchIndex class allows for automatic generation of a
SearchIndex based on the fields of the model assigned to it.

With the exception of the automated introspection, it is a SearchIndex
class, so all notes above pertaining to SearchIndexes apply. As with the
ModelForm class in Django, it employs an inner class called Meta,
which should either contain a pass to include all fields, a fields list
to specify a whitelisted set of fields or excludes to prevent certain fields
from appearing in the class. Unlike ModelForm, you should NOT specify
a model attribute, as that is already handled when registering the class.

In addition, it adds a text field that is the document=True field and
has use_template=True option set, just like the BasicSearchIndex.

Warning

Usage of this class might result in inferior SearchIndex objects, which
can directly affect your search results. Use this to establish basic
functionality and move to custom SearchIndex objects for better control.

At this time, it does not handle related fields.

Quick Start

For the impatient:

import datetime
from haystack.indexes import *
from haystack import site
from myapp.models import Note

All Fields
class AllNoteIndex(ModelSearchIndex):
 class Meta:
 pass

Blacklisted Fields
class LimitedNoteIndex(ModelSearchIndex):
 class Meta:
 excludes = ['user']

Whitelisted Fields
class NoteIndex(ModelSearchIndex):
 class Meta:
 fields = ['user', 'pub_date']

 # Note that regular ``SearchIndex`` methods apply.
 def index_queryset(self):
 "Used when the entire index for model is updated."
 return Note.objects.filter(pub_date__lte=datetime.datetime.now())

site.register(Note, NoteIndex)

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

SearchField API

	
class SearchField

	

The SearchField and it’s subclasses provides a way to declare what data
you’re interested in indexing. They are used with SearchIndexes, much like
forms.*Field are used within forms or models.*Field within models.

They provide both the means for storing data in the index, as well as preparing
the data before it’s placed in the index. Haystack uses all fields from all
SearchIndex classes to determine what the engine’s index schema ought to
look like.

In practice, you’ll likely never actually use the base SearchField, as the
subclasses are much better at handling real data.

Subclasses

Included with Haystack are the following field types:

	BooleanField

	CharField

	DateField

	DateTimeField

	DecimalField

	EdgeNgramField

	FloatField

	IntegerField

	MultiValueField

	NgramField

And equivalent faceted versions:

	FacetBooleanField

	FacetCharField

	FacetDateField

	FacetDateTimeField

	FacetDecimalField

	FacetFloatField

	FacetIntegerField

	FacetMultiValueField

Note

There is no faceted variant of the n-gram fields. Because of how the engine
generates n-grams, faceting on these field types (NgramField &
EdgeNgram) would make very little sense.

Usage

While SearchField objects can be used on their own, they’re generally used
within a SearchIndex. You use them in a declarative manner, just like
fields in django.forms.Form or django.db.models.Model objects. For
example:

from haystack.indexes import *

class NoteIndex(SearchIndex):
 text = CharField(document=True, use_template=True)
 author = CharField(model_attr='user')
 pub_date = DateTimeField(model_attr='pub_date')

This will hook up those fields with the index and, when updating a Model
object, pull the relevant data out and prepare it for storage in the index.

Field Options

default

	
SearchField.default

	

Provides a means for specifying a fallback value in the event that no data is
found for the field. Can be either a value or a callable.

document

	
SearchField.document

	

A boolean flag that indicates which of the fields in the SearchIndex ought
to be the primary field for searching within. Default is False.

Note

Only one field can be marked as the document=True field, so you should
standardize this name and the format of the field between all of your
SearchIndex classes.

indexed

	
SearchField.indexed

	

A boolean flag for indicating whether or not the the data from this field will
be searchable within the index. Default is True.

The companion of this option is stored.

index_fieldname

	
SearchField.index_fieldname

	

The index_fieldname option allows you to force the name of the field in the
index. This does not change how Haystack refers to the field. This is useful
when using Solr’s dynamic attributes or when integrating with other external
software.

Default is variable name of the field within the SearchIndex.

model_attr

	
SearchField.model_attr

	

The model_attr option is a shortcut for preparing data. Rather than having
to manually fetch data out of a Model, model_attr allows you to specify
a string that will automatically pull data out for you. For example:

Automatically looks within the model and populates the field with
the ``last_name`` attribute.
author = CharField(model_attr='last_name')

It also handles callables:

On a ``User`` object, pulls the full name as pieced together by the
``get_full_name`` method.
author = CharField(model_attr='get_full_name')

And can look through relations:

Pulls the ``bio`` field from a ``UserProfile`` object that has a
``OneToOneField`` relationship to a ``User`` object.
biography = CharField(model_attr='user__profile__bio')

null

	
SearchField.null

	

A boolean flag for indicating whether or not it’s permissible for the field
not to contain any data. Default is False.

Note

Unlike Django’s database layer, which injects a NULL into the database
when a field is marked nullable, null=True will actually exclude that
field from being included with the document. This more efficient for the
search engine to deal with.

stored

	
SearchField.stored

	

A boolean flag for indicating whether or not the data from this field will
be stored within the index. Default is True.

This is useful for pulling data out of the index along with the search result
in order to save on hits to the database.

The companion of this option is indexed.

template_name

	
SearchField.template_name

	

Allows you to override the name of the template to use when preparing data. By
default, the data templates for fields are located within your TEMPLATE_DIRS
under a path like search/indexes/{app_label}/{model_name}_{field_name}.txt.
This option lets you override that path (though still within TEMPLATE_DIRS).

Example:

bio = CharField(use_template=True, template_name='myapp/data/bio.txt')

You can also provide a list of templates, as loader.select_template is used
under the hood.

Example:

bio = CharField(use_template=True, template_name=['myapp/data/bio.txt', 'myapp/bio.txt', 'bio.txt'])

use_template

	
SearchField.use_template

	

A boolean flag for indicating whether or not a field should prepare its data
via a data template or not. Default is False.

Data templates are extremely useful, as they let you easily tie together
different parts of the Model (and potentially related models). This leads
to better search results with very little effort.

Method Reference

__init__

	
SearchField.__init__(self, model_attr=None, use_template=False, template_name=None, document=False, indexed=True, stored=True, faceted=False, default=NOT_PROVIDED, null=False, index_fieldname=None, facet_class=None, boost=1.0, weight=None)

	

Instantiates a fresh SearchField instance.

has_default

	
SearchField.has_default(self)

	

Returns a boolean of whether this field has a default value.

prepare

	
SearchField.prepare(self, obj)

	

Takes data from the provided object and prepares it for storage in the
index.

prepare_template

	
SearchField.prepare_template(self, obj)

	

Flattens an object for indexing.

This loads a template
(search/indexes/{app_label}/{model_name}_{field_name}.txt) and
returns the result of rendering that template. object will be in
its context.

convert

	
SearchField.convert(self, value)

	

Handles conversion between the data found and the type of the field.

Extending classes should override this method and provide correct
data coercion.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

SearchResult API

	
class SearchResult(app_label, model_name, pk, score, searchsite=None, **kwargs)

	

The SearchResult class provides structure to the results that come back from
the search index. These objects are what a SearchQuerySet will return when
evaluated.

Attribute Reference

The class exposes the following useful attributes/properties:

	app_label - The application the model is attached to.

	model_name - The model’s name.

	pk - The primary key of the model.

	score - The score provided by the search engine.

	object - The actual model instance (lazy loaded).

	model - The model class.

	verbose_name - A prettier version of the model’s class name for display.

	searchsite - The SearchSite the record is associated with.

Method Reference

content_type

	
SearchResult.content_type(self)

	

Returns the content type for the result’s model instance.

get_additional_fields

	
SearchResult.get_additional_fields(self)

	

Returns a dictionary of all of the fields from the raw result.

Useful for serializing results. Only returns what was seen from the
search engine, so it may have extra fields Haystack’s indexes aren’t
aware of.

get_stored_fields

	
SearchResult.get_stored_fields(self)

	

Returns a dictionary of all of the stored fields from the SearchIndex.

Useful for serializing results. Only returns the fields Haystack’s
indexes are aware of as being ‘stored’.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

SearchSite API

	
class SearchSite

	

The SearchSite provides a way to collect the SearchIndexes that are
relevant to the current site, much like ModelAdmins in the admin app.

This allows you to register indexes on models you don’t control (reusable
apps, django.contrib, etc.) as well as customize on a per-site basis what
indexes should be available (different indexes for different sites, same
codebase).

A SearchSite instance(s) should be configured within a configuration file, which gets specified in your settings file as HAYSTACK_SITECONF. An example of this setting might be myproject.search_sites.

Warning

For a long time before the 1.0 release of Haystack, the convention was to
place this configuration within your URLconf. This is no longer recommended
as it can cause issues in certain production setups (Django 1.1+/mod_wsgi
for example).

Autodiscovery

Since the common use case is to simply grab everything that is indexed for
search, there is an autodiscovery mechanism which will pull in and register
all indexes it finds within your project. To enable this, place the following
code inside the file you specified as your HAYSTACK_SITECONF:

import haystack
haystack.autodiscover()

This will fully flesh-out the default SearchSite (at
haystack.sites.site) for use. Since this site is used by default throughout
Haystack, very little (if any) additional configuration will be needed.

Usage

If you need to narrow the indexes that get registered, you will need to
manipulate a SearchSite. There are two ways to go about this, via either
register or unregister.

If you want most of the indexes but want to forgo a specific one(s), you can
setup the main site via autodiscover then simply unregister the one(s)
you don’t want.:

import haystack
haystack.autodiscover()

Unregister the Rating index.
from ratings.models import Rating
haystack.sites.site.unregister(Rating)

Alternatively, you can manually register only the indexes you want.:

from haystack import site
from ratings.models import Rating
from ratings.search_indexes import RatingIndex

site.register(Rating, RatingIndex)

Method Reference

register

	
SearchSite.register(self, model, index_class=None)

	

Registers a model with the site.

The model should be a Model class, not instances.

If no custom index is provided, a generic SearchIndex will be applied
to the model.

unregister

	
SearchSite.unregister(self, model)

	

Unregisters a model’s corresponding index from the site.

get_index

	
SearchSite.get_index(self, model)

	

Provides the index that’s registered for a particular model.

get_indexes

	
SearchSite.get_indexes(self)

	

Provides a dictionary of all indexes that’re being used.

get_indexed_models

	
SearchSite.get_indexed_models(self)

	

Provides a list of all models being indexed.

all_searchfields

	
SearchSite.all_searchfields(self)

	

Builds a dictionary of all fields appearing in any of the SearchIndex
instances registered with a site.

This is useful when building a schema for an engine. A dictionary is
returned, with each key being a fieldname (or index_fieldname) and the
value being the SearchField class assigned to it.

update_object

	
SearchSite.update_object(self, instance)

	

Updates the instance’s data in the index.

A shortcut for updating on the instance’s index. Errors from get_index
and update_object will be allowed to propogate.

remove_object

	
SearchSite.remove_object(self, instance)

	

Removes the instance’s data in the index.

A shortcut for removing on the instance’s index. Errors from get_index
and remove_object will be allowed to propogate.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

SearchQuery API

	
class SearchQuery(backend=None)

	

The SearchQuery class acts as an intermediary between SearchQuerySet‘s
abstraction and SearchBackend‘s actual search. Given the metadata provided
by SearchQuerySet, SearchQuery build the actual query and interacts
with the SearchBackend on SearchQuerySet‘s behalf.

This class must be at least partially implemented on a per-backend basis, as portions
are highly specific to the backend. It usually is bundled with the accompanying
SearchBackend.

Most people will NOT have to use this class directly. SearchQuerySet
handles all interactions with SearchQuery objects and provides a nicer
interface to work with.

Should you need advanced/custom behavior, you can supply your version of
SearchQuery that overrides/extends the class in the manner you see fit.
SearchQuerySet objects take a kwarg parameter query where you can pass
in your class.

SQ Objects

For expressing more complex queries, especially involving AND/OR/NOT in
different combinations, you should use SQ objects. Like
django.db.models.Q objects, SQ objects can be passed to
SearchQuerySet.filter and use the familiar unary operators (&, | and
~) to generate complex parts of the query.

Warning

Any data you pass to SQ objects is passed along unescaped. If
you don’t trust the data you’re passing along, you should use
the clean method on your SearchQuery to sanitize the data.

Example:

from haystack.query import SQ

We want "title: Foo AND (tags:bar OR tags:moof)"
sqs = SearchQuerySet().filter(title='Foo').filter(SQ(tags='bar') | SQ(tags='moof'))

To clean user-provided data:
sqs = SearchQuerySet()
clean_query = sqs.query.clean(user_query)
sqs = sqs.filter(SQ(title=clean_query) | SQ(tags=clean_query))

Internally, the SearchQuery object maintains a tree of SQ objects. Each
SQ object supports what field it looks up against, what kind of lookup (i.e.
the __ filters), what value it’s looking for, if it’s a AND/OR/NOT and
tracks any children it may have. The SearchQuery.build_query method starts
with the root of the tree, building part of the final query at each node until
the full final query is ready for the SearchBackend.

Backend-Specific Methods

When implementing a new backend, the following methods will need to be created:

build_query_fragment

	
SearchQuery.build_query_fragment(self, field, filter_type, value)

	

Generates a query fragment from a field, filter type and a value.

Must be implemented in backends as this will be highly backend specific.

Inheritable Methods

The following methods have a complete implementation in the base class and
can largely be used unchanged.

build_query

	
SearchQuery.build_query(self)

	

Interprets the collected query metadata and builds the final query to
be sent to the backend.

build_params

	
SearchQuery.build_params(self, spelling_query=None)

	

Generates a list of params to use when searching.

clean

	
SearchQuery.clean(self, query_fragment)

	

Provides a mechanism for sanitizing user input before presenting the
value to the backend.

A basic (override-able) implementation is provided.

run

	
SearchQuery.run(self, spelling_query=None, **kwargs)

	

Builds and executes the query. Returns a list of search results.

Optionally passes along an alternate query for spelling suggestions.

Optionally passes along more kwargs for controlling the search query.

run_mlt

	
SearchQuery.run_mlt(self, **kwargs)

	

Executes the More Like This. Returns a list of search results similar
to the provided document (and optionally query).

run_raw

	
SearchQuery.run_raw(self, **kwargs)

	

Executes a raw query. Returns a list of search results.

get_count

	
SearchQuery.get_count(self)

	

Returns the number of results the backend found for the query.

If the query has not been run, this will execute the query and store
the results.

get_results

	
SearchQuery.get_results(self, **kwargs)

	

Returns the results received from the backend.

If the query has not been run, this will execute the query and store
the results.

get_facet_counts

	
SearchQuery.get_facet_counts(self)

	

Returns the results received from the backend.

If the query has not been run, this will execute the query and store
the results.

boost_fragment

	
SearchQuery.boost_fragment(self, boost_word, boost_value)

	

Generates query fragment for boosting a single word/value pair.

matching_all_fragment

	
SearchQuery.matching_all_fragment(self)

	

Generates the query that matches all documents.

add_filter

	
SearchQuery.add_filter(self, expression, value, use_not=False, use_or=False)

	

Narrows the search by requiring certain conditions.

add_order_by

	
SearchQuery.add_order_by(self, field)

	

Orders the search result by a field.

clear_order_by

	
SearchQuery.clear_order_by(self)

	

Clears out all ordering that has been already added, reverting the
query to relevancy.

add_model

	
SearchQuery.add_model(self, model)

	

Restricts the query requiring matches in the given model.

This builds upon previous additions, so you can limit to multiple models
by chaining this method several times.

set_limits

	
SearchQuery.set_limits(self, low=None, high=None)

	

Restricts the query by altering either the start, end or both offsets.

clear_limits

	
SearchQuery.clear_limits(self)

	

Clears any existing limits.

add_boost

	
SearchQuery.add_boost(self, term, boost_value)

	

Adds a boosted term and the amount to boost it to the query.

raw_search

	
SearchQuery.raw_search(self, query_string, **kwargs)

	

Runs a raw query (no parsing) against the backend.

This method causes the SearchQuery to ignore the standard query
generating facilities, running only what was provided instead.

Note that any kwargs passed along will override anything provided
to the rest of the SearchQuerySet.

more_like_this

	
SearchQuery.more_like_this(self, model_instance)

	

Allows backends with support for “More Like This” to return results
similar to the provided instance.

add_highlight

	
SearchQuery.add_highlight(self)

	

Adds highlighting to the search results.

add_field_facet

	
SearchQuery.add_field_facet(self, field)

	

Adds a regular facet on a field.

add_date_facet

	
SearchQuery.add_date_facet(self, field, start_date, end_date, gap_by, gap_amount)

	

Adds a date-based facet on a field.

add_query_facet

	
SearchQuery.add_query_facet(self, field, query)

	

Adds a query facet on a field.

add_narrow_query

	
SearchQuery.add_narrow_query(self, query)

	

Narrows a search to a subset of all documents per the query.

Generally used in conjunction with faceting.

set_result_class

	
SearchQuery.set_result_class(self, klass)

	

Sets the result class to use for results.

Overrides any previous usages. If None is provided, Haystack will
revert back to the default SearchResult object.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

SearchBackend API

	
class SearchBackend(site=None)

	

The SearchBackend class handles interaction directly with the backend. The
search query it performs is usually fed to it from a SearchQuery class that
has been built for that backend.

This class must be at least partially implemented on a per-backend basis and
is usually accompanied by a SearchQuery class within the same module.

Unless you are writing a new backend, it is unlikely you need to directly
access this class.

Method Reference

update

	
SearchBackend.update(self, index, iterable)

	

Updates the backend when given a SearchIndex and a collection of
documents.

This method MUST be implemented by each backend, as it will be highly
specific to each one.

remove

	
SearchBackend.remove(self, obj_or_string)

	

Removes a document/object from the backend. Can be either a model
instance or the identifier (i.e. app_name.model_name.id) in the
event the object no longer exists.

This method MUST be implemented by each backend, as it will be highly
specific to each one.

clear

	
SearchBackend.clear(self, models=[])

	

Clears the backend of all documents/objects for a collection of models.

This method MUST be implemented by each backend, as it will be highly
specific to each one.

search

	
SearchBackend.search(self, query_string, sort_by=None, start_offset=0, end_offset=None, fields='', highlight=False, facets=None, date_facets=None, query_facets=None, narrow_queries=None, spelling_query=None, limit_to_registered_models=None, result_class=None, **kwargs)

	

Takes a query to search on and returns dictionary.

The query should be a string that is appropriate syntax for the backend.

The returned dictionary should contain the keys ‘results’ and ‘hits’.
The ‘results’ value should be an iterable of populated SearchResult
objects. The ‘hits’ should be an integer count of the number of matched
results the search backend found.

This method MUST be implemented by each backend, as it will be highly
specific to each one.

prep_value

	
SearchBackend.prep_value(self, value)

	

Hook to give the backend a chance to prep an attribute value before
sending it to the search engine.

By default, just force it to unicode.

more_like_this

	
SearchBackend.more_like_this(self, model_instance, additional_query_string=None, result_class=None)

	

Takes a model object and returns results the backend thinks are similar.

This method MUST be implemented by each backend, as it will be highly
specific to each one.

build_schema

	
SearchBackend.build_schema(self, fields)

	

Takes a dictionary of fields and returns schema information.

This method MUST be implemented by each backend, as it will be highly
specific to each one.

build_registered_models_list

	
SearchBackend.build_registered_models_list(self)

	

Builds a list of registered models for searching.

The search method should use this and the django_ct field to
narrow the results (unless the user indicates not to). This helps ignore
any results that are not currently registered models and ensures
consistent caching.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Running Tests

Core Haystack Functionality

In order to test Haystack with the minimum amount of unnecessary mocking and to
stay as close to real-world use as possible, Haystack ships with a test
app (called core) within the django-haystack/tests directory.

In the event you need to run Haystack‘s tests (such as testing
bugfixes/modifications), here are the steps to getting them running:

cd django-haystack/tests
export PYTHONPATH=`pwd`
django-admin.py test core --settings=settings

Haystack is maintained with all tests passing at all times, so if you
receive any errors during testing, please check your setup and file a report if
the errors persist.

Backends

If you want to test a backend, the steps are the same with the exception of
the settings module and the app to test. To test an engine, use the
engine_settings module within the tests directory, substituting the
engine for the name of the proper backend. You’ll also need to specify the
app for that engine. For instance, to run the Solr backend’s tests:

cd django-haystack/tests
export PYTHONPATH=`pwd`
django-admin.py test solr_tests --settings=solr_settings

Or, to run the Whoosh backend’s tests:

cd django-haystack/tests
export PYTHONPATH=`pwd`
django-admin.py test whoosh_tests --settings=whoosh_settings

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Haystack 1.2.7 documentation

Creating New Backends

The process should be fairly simple.

	Create new backend file. Name is important.

	Two classes inside.
	SearchBackend (inherit from haystack.backends.BaseSearchBackend)

	SearchQuery (inherit from haystack.backends.BaseSearchQuery)

SearchBackend

Responsible for the actual connection and low-level details of interacting with
the backend.

	Connects to search engine

	Method for saving new docs to index

	Method for removing docs from index

	Method for performing the actual query

SearchQuery

Responsible for taking structured data about the query and converting it into a
backend appropriate format.

	Method for creating the backend specific query - build_query.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	
 previous |

 	Haystack 1.2.7 documentation

Utilities

Included here are some of the general use bits included with Haystack.

get_identifier

	
get_identifier(obj_or_string)

	

Get an unique identifier for the object or a string representing the
object.

If not overridden, uses <app_label>.<object_name>.<pk>.

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 Navigation

 	
 index

 	Haystack 1.2.7 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

_

 	

 	__init__() (SearchField method)

A

 	

 	add_boost() (SearchQuery method)

 	add_date_facet() (SearchQuery method)

 	add_field_facet() (SearchQuery method)

 	add_filter() (SearchQuery method)

 	add_highlight() (SearchQuery method)

 	add_model() (SearchQuery method)

 	

 	add_narrow_query() (SearchQuery method)

 	add_order_by() (SearchQuery method)

 	add_query_facet() (SearchQuery method)

 	all_searchfields() (SearchSite method)

 	auto_query() (SearchQuerySet method)

B

 	

 	best_match() (SearchQuerySet method)

 	boost() (SearchQuerySet method)

 	boost_fragment() (SearchQuery method)

 	build_params() (SearchQuery method)

 	

 	build_query() (SearchQuery method)

 	build_query_fragment() (SearchQuery method)

 	build_registered_models_list() (SearchBackend method)

 	build_schema() (SearchBackend method)

C

 	

 	clean() (SearchQuery method)

 	clear() (SearchBackend method)

 	

 	(SearchIndex method)

 	clear_limits() (SearchQuery method)

 	clear_order_by() (SearchQuery method)

 	

 	content_type() (SearchResult method)

 	convert() (SearchField method)

 	count() (SearchQuerySet method)

D

 	

 	date_facet() (SearchQuerySet method)

 	default (SearchField attribute)

 	

 	document (SearchField attribute)

E

 	

 	exclude() (SearchQuerySet method)

F

 	

 	facet() (SearchQuerySet method)

 	facet_counts() (SearchQuerySet method)

 	filter() (SearchQuerySet method)

 	

 	filter_and() (SearchQuerySet method)

 	filter_or() (SearchQuerySet method)

G

 	

 	get_additional_fields() (SearchResult method)

 	get_content_field() (SearchIndex method)

 	get_count() (SearchQuery method)

 	get_facet_counts() (SearchQuery method)

 	get_identifier() (built-in function)

 	get_index() (SearchSite method)

 	

 	get_indexed_models() (SearchSite method)

 	get_indexes() (SearchSite method)

 	get_results() (SearchQuery method)

 	get_stored_fields() (SearchResult method)

 	get_updated_field() (SearchIndex method)

H

 	

 	has_default() (SearchField method)

 	

 	highlight() (SearchQuerySet method)

I

 	

 	index_fieldname (SearchField attribute)

 	index_queryset() (SearchIndex method)

 	

 	indexed (SearchField attribute)

L

 	

 	latest() (SearchQuerySet method)

 	load_all() (SearchQuerySet method)

 	

 	load_all_queryset() (RelatedSearchQuerySet method)

 	

 	(SearchIndex method)

 	(SearchQuerySet method)

M

 	

 	matching_all_fragment() (SearchQuery method)

 	model_attr (SearchField attribute)

 	

 	models() (SearchQuerySet method)

 	more_like_this() (SearchBackend method)

 	

 	(SearchQuery method)

 	(SearchQuerySet method)

N

 	

 	narrow() (SearchQuerySet method)

 	

 	null (SearchField attribute)

O

 	

 	order_by() (SearchQuerySet method)

P

 	

 	prep_value() (SearchBackend method)

 	prepare() (SearchField method)

 	

 	(SearchIndex method)

 	

 	prepare_template() (SearchField method)

Q

 	

 	query_facet() (SearchQuerySet method)

R

 	

 	raw_search() (SearchQuery method)

 	

 	(SearchQuerySet method)

 	read_queryset() (SearchIndex method)

 	register() (SearchSite method)

 	reindex() (SearchIndex method)

 	remove() (SearchBackend method)

 	

 	remove_object() (SearchIndex method)

 	

 	(SearchSite method)

 	result_class() (SearchQuerySet method)

 	run() (SearchQuery method)

 	run_mlt() (SearchQuery method)

 	run_raw() (SearchQuery method)

S

 	

 	search() (SearchBackend method)

 	SearchBackend (built-in class)

 	SearchField (built-in class)

 	SearchIndex (built-in class)

 	SearchQuery (built-in class)

 	SearchQuerySet (built-in class)

 	SearchResult (built-in class)

 	

 	SearchSite (built-in class)

 	set_limits() (SearchQuery method)

 	set_result_class() (SearchQuery method)

 	should_update() (SearchIndex method)

 	spelling_suggestion() (SearchQuerySet method)

 	stored (SearchField attribute)

T

 	

 	template_name (SearchField attribute)

U

 	

 	unregister() (SearchSite method)

 	update() (SearchBackend method)

 	

 	(SearchIndex method)

 	

 	update_object() (SearchIndex method)

 	

 	(SearchSite method)

 	use_template (SearchField attribute)

V

 	

 	values() (SearchQuerySet method)

 	

 	values_list() (SearchQuerySet method)

 Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 	1.0.X

 	v1.2.7

 	v1.2.6

 	v1.2.5

 	v1.2.4

 	v1.2.2

 	v1.2.1

 	v1.2.0

 	v1.1

 _static/minus.png

search.html

 Navigation

 		
 index

 		Haystack 1.2.7 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2012, Daniel Lindsley.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 		master

 		latest

 		1.0.X

 		v1.2.7

 		v1.2.6

 		v1.2.5

 		v1.2.4

 		v1.2.2

 		v1.2.1

 		v1.2.0

 		v1.1

_static/comment-close.png

_static/up-pressed.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/plus.png

